Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Expert Opin Drug Discov ; 15(12): 1457-1471, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32838572

RESUMO

INTRODUCTION: Excessive exposure to noise is a common occurrence that contributes to approximately 50% of the non-genetic hearing loss cases. Researchers need to develop standardized preclinical models and identify molecular targets to effectively develop prevention and curative therapies. AREAS COVERED: In this review, the authors discuss the many facets of human noise-induced pathology, and the primary experimental models for studying the basic mechanisms of noise-induced damage, making connections and inferences among basic science studies, preclinical proofs of concept and clinical trials. EXPERT OPINION: Whilst experimental research in animal models has helped to unravel the mechanisms of noise-induced hearing loss, there are often methodological variations and conflicting results between animal and human studies which make it difficult to integrate data and translate basic outcomes to clinical practice. Standardization of exposure paradigms and application of -omic technologies will contribute to improving the effectiveness of transferring newly gained knowledge to clinical practice.


Assuntos
Desenvolvimento de Medicamentos , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Terapia de Alvo Molecular , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Perda Auditiva Provocada por Ruído/fisiopatologia , Humanos , Especificidade da Espécie
2.
J Vis Exp ; (121)2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28362376

RESUMO

We present two minimally invasive microsurgical techniques in rodents for specific drug delivery into the middle ear so that it may reach the inner ear. The first procedure consists of perforation of the tympanic bulla, termed bullostomy; the second one is a transtympanic injection. Both emulate human clinical intratympanic procedures. Chitosan-glycerophosphate (CGP) and Ringer´s Lactate buffer (RL) were used as biocompatible vehicles for local drug delivery. CGP is a nontoxic biodegradable polymer widely used in pharmaceutical applications. It is a viscous liquid at RT but it congeals to a semi solid phase at body temperature. RL is an isotonic solution used for intravenous administrations in humans. A small volume of this vehicle is precisely placed on the Round Window (RW) niche by means of a bullostomy. A transtympanic injection fills the middle ear and allows less control but broader access to the inner ear. The safety profiles of both techniques were studied and compared by using functional and morphological tests. Hearing was evaluated by registering the Auditory Brainstem Response (ABR) before and several times after microsurgery. The cytoarchitecture and preservation level of cochlear structures were studied by conventional histological techniques in paraformaldehyde-fixed and decalcified cochlear samples. In parallel, unfixed cochlear samples were taken and immediately frozen to analyze gene expression profiles of inflammatory markers by quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR). Both procedures are suitable as drug delivery methods into the mouse middle ear, although transtympanic injection proved to be less invasive compared to bullostomy.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Perda Auditiva/terapia , Microcirurgia/métodos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Procedimentos Cirúrgicos Otológicos/métodos , Janela da Cóclea/cirurgia , Membrana Timpânica/cirurgia , Animais , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Perda Auditiva/fisiopatologia , Injeções , Camundongos , Janela da Cóclea/efeitos dos fármacos , Janela da Cóclea/fisiopatologia
4.
FASEB J ; 29(2): 418-32, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25384423

RESUMO

Nutritional imbalance is emerging as a causative factor of hearing loss. Epidemiologic studies have linked hearing loss to elevated plasma total homocysteine (tHcy) and folate deficiency, and have shown that folate supplementation lowers tHcy levels potentially ameliorating age-related hearing loss. The purpose of this study was to address the impact of folate deficiency on hearing loss and to examine the underlying mechanisms. For this purpose, 2-mo-old C57BL/6J mice (Animalia Chordata Mus musculus) were randomly divided into 2 groups (n = 65 each) that were fed folate-deficient (FD) or standard diets for 8 wk. HPLC analysis demonstrated a 7-fold decline in serum folate and a 3-fold increase in tHcy levels. FD mice exhibited severe hearing loss measured by auditory brainstem recordings and TUNEL-positive-apoptotic cochlear cells. RT-quantitative PCR and Western blotting showed reduced levels of enzymes catalyzing homocysteine (Hcy) production and recycling, together with a 30% increase in protein homocysteinylation. Redox stress was demonstrated by decreased expression of catalase, glutathione peroxidase 4, and glutathione synthetase genes, increased levels of manganese superoxide dismutase, and NADPH oxidase-complex adaptor cytochrome b-245, α-polypeptide (p22phox) proteins, and elevated concentrations of glutathione species. Altogether, our findings demonstrate, for the first time, that the relationship between hyperhomocysteinemia induced by folate deficiency and premature hearing loss involves impairment of cochlear Hcy metabolism and associated oxidative stress.


Assuntos
Cóclea/fisiopatologia , Deficiência de Ácido Fólico/fisiopatologia , Perda Auditiva/fisiopatologia , Homocisteína/metabolismo , Hiper-Homocisteinemia/fisiopatologia , Estresse Oxidativo , Animais , Apoptose , Betaína-Homocisteína S-Metiltransferase/genética , Catalase/metabolismo , Cromatografia Líquida de Alta Pressão , Feminino , Ácido Fólico/sangue , Deficiência de Ácido Fólico/complicações , Glutationa Peroxidase/metabolismo , Glutationa Sintase/metabolismo , Células Ciliadas Auditivas/citologia , Perda Auditiva/etiologia , Homocisteína/deficiência , Hiper-Homocisteinemia/complicações , Marcação In Situ das Extremidades Cortadas , Metionina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxirredução , Fosfolipídeo Hidroperóxido Glutationa Peroxidase
5.
PLoS One ; 9(2): e87536, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24503961

RESUMO

Insulin-like growth factor-I (IGF-I) deficiency causes growth delay, and IGF-I has been shown to partially mediate bone anabolism by parathyroid hormone (PTH). PTH-related protein (PTHrP) is abundant in bone, and has osteogenic features by poorly defined mechanisms. We here examined the capacity of PTHrP (1-36) and PTHrP (107-111) (osteostatin) to reverse the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each PTHrP peptide (80 µg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype) or saline vehicle (3 males and 3 females for each genotype). We found that treatment with either PTHrP peptide ameliorated trabecular structure in the femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely runx2, osteoprotegerin/receptor activator of NF-κB ligand ratio, Wnt3a , cyclin D1, connexin 43, catalase and Gadd45, as well as in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2 was increased in Igf1-null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1-36) and osteostatin were effective in promoting bone marrow stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1-36) and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone.


Assuntos
Fêmur/anormalidades , Transtornos do Crescimento/tratamento farmacológico , Perda Auditiva Neurossensorial/tratamento farmacológico , Fator de Crescimento Insulin-Like I/deficiência , Proteína Relacionada ao Hormônio Paratireóideo/uso terapêutico , Fragmentos de Peptídeos/uso terapêutico , Animais , Feminino , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Fêmur/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Transtornos do Crescimento/patologia , Perda Auditiva Neurossensorial/patologia , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Proteína Relacionada ao Hormônio Paratireóideo/química , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Fenótipo , Radiografia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
6.
Front Mol Neurosci ; 4: 11, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21845174

RESUMO

Insulin-like growth factor-I (IGF-I) belongs to the family of polypeptides of insulin, which play a central role in embryonic development and adult nervous system homeostasis by endocrine, autocrine, and paracrine mechanisms. IGF-I is fundamental for the regulation of cochlear development, growth, and differentiation, and its mutations are associated with hearing loss in mice and men. Low levels of IGF-I have been shown to correlate with different human syndromes showing hearing loss and with presbyacusis. Animal models are fundamental to understand the genetic, epigenetic, and environmental factors that contribute to human hearing loss. In the mouse, IGF-I serum levels decrease with aging and there is a concomitant hearing loss and retinal degeneration. In the Igf1(-/-) null mouse, hearing loss is due to neuronal loss, poor innervation of the sensory hair cells, and age-related stria vascularis alterations. In the inner ear, IGF-I actions are mediated by intracellular signaling networks, RAF, AKT, and p38 MAPK protein kinases modulate the expression and activity of transcription factors, as AP1, MEF2, FoxM1, and FoxP3, leading to the regulation of cell cycle and metabolism. Therapy with rhIGF-I has been approved in humans for the treatment of poor linear growth and certain neurodegenerative diseases. This review will discuss these findings and their implications in new IGF-I-based treatments for the protection or repair of hearing loss.

7.
Front Neuroanat ; 4: 27, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20661454

RESUMO

Insulin-like growth factor-I (IGF-I) belongs to the family of insulin-related peptides that fulfils a key role during the late development of the nervous system. Human IGF1 mutations cause profound deafness, poor growth and mental retardation. Accordingly, Igf1(-/-) null mice are dwarfs that have low survival rates, cochlear alterations and severe sensorineural deafness. Presbycusis (age-related hearing loss) is a common disorder associated with aging that causes social and cognitive problems. Aging is also associated with a decrease in circulating IGF-I levels and this reduction has been related to cognitive and brain alterations, although there is no information as yet regarding the relationship between presbycusis and IGF-I biodisponibility. Here we present a longitudinal study of wild type Igf1(+/+) and null Igf1(-/-) mice from 2 to 12 months of age comparing the temporal progression of several parameters: hearing, brain morphology, cochlear cytoarchitecture, insulin-related factors and IGF gene expression and IGF-I serum levels. Complementary invasive and non-invasive techniques were used, including auditory brainstem-evoked response (ABR) recordings and in vivo MRI brain imaging. Igf1(-/-) null mice presented profound deafness at all the ages studied, without any obvious worsening of hearing parameters with aging. Igf1(+/+) wild type mice suffered significant age-related hearing loss, their auditory thresholds and peak I latencies augmenting as they aged, in parallel with a decrease in the circulating levels of IGF-I. Accordingly, there was an age-related spiral ganglion degeneration in wild type mice that was not evident in the Igf1 null mice. However, the Igf1(-/-) null mice in turn developed a prematurely aged stria vascularis reminiscent of the diabetic strial phenotype. Our data indicate that IGF-I is required for the correct development and maintenance of hearing, supporting the idea that IGF-I-based therapies could contribute to prevent or ameliorate age-related hearing loss.

8.
Pigment Cell Melanoma Res ; 23(1): 72-83, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19843244

RESUMO

Strial melanocytes are required for normal development and correct functioning of the cochlea. Hearing deficits have been reported in albino individuals from different species, although melanin appears to be not essential for normal auditory function. We have analyzed the auditory brainstem responses (ABR) of two transgenic mice: YRT2, carrying the entire mouse tyrosinase (Tyr) gene expression-domain and undistinguishable from wild-type pigmented animals; and TyrTH, non-pigmented but ectopically expressing tyrosine hydroxylase (Th) in melanocytes, which generate the precursor metabolite, L-DOPA, but not melanin. We show that young albino mice present a higher prevalence of profound sensorineural deafness and a poorer recovery of auditory thresholds after noise-exposure than transgenic mice. Hearing loss was associated with absence of cochlear melanin or its precursor metabolites and latencies of the central auditory pathway were unaltered. In summary, albino mice show impaired hearing responses during ageing and after noise damage when compared to YRT2 and TyrTH transgenic mice, which do not show the albino-associated ABR alterations. These results demonstrate that melanin precursors, such as L-DOPA, have a protective role in the mammalian cochlea in age-related and noise-induced hearing loss.


Assuntos
Albinismo/complicações , Albinismo/genética , Predisposição Genética para Doença/genética , Perda Auditiva Neurossensorial/genética , Melaninas/biossíntese , Envelhecimento/genética , Envelhecimento/metabolismo , Senilidade Prematura/complicações , Senilidade Prematura/genética , Albinismo/fisiopatologia , Albinismo Oculocutâneo/complicações , Albinismo Oculocutâneo/genética , Albinismo Oculocutâneo/fisiopatologia , Animais , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Regulação Enzimológica da Expressão Gênica/genética , Perda Auditiva Provocada por Ruído/enzimologia , Perda Auditiva Provocada por Ruído/genética , Perda Auditiva Provocada por Ruído/fisiopatologia , Perda Auditiva Neurossensorial/enzimologia , Perda Auditiva Neurossensorial/fisiopatologia , Levodopa/biossíntese , Camundongos , Camundongos Transgênicos , Monofenol Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/genética
9.
Hear Res ; 196(1-2): 19-25, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15464297

RESUMO

Insulin-like growth factors (IGFs) have a pivotal role during nervous system development and in its functional maintenance. IGF-I and its high affinity receptor (IGF1R) are expressed in the developing inner ear and in the postnatal cochlear and vestibular ganglia. We recently showed that trophic support by IGF-I is essential for the early neurogenesis of the chick cochleovestibular ganglion (CVG). In the chicken embryo otic vesicle, IGF-I regulates developmental death dynamics by regulating the activity and/or levels of key intracellular molecules, including lipid and protein kinases such as ceramide kinase, Akt and Jun N-terminal kinase (JNK). Mice lacking IGF-I lose many auditory neurons and present increased auditory thresholds at early postnatal ages. Neuronal loss associated to IGF-I deficiency is caused by apoptosis of the auditory neurons, which presented abnormally increased levels of activated caspase-3. It is worth noting that in man, homozygous deletion of the IGF-1 gene causes sensory-neural deafness. IGF-I is thus necessary for normal development and maintenance of the inner ear. The trophic actions of IGF-I in the inner ear suggest that this factor may have therapeutic potential for the treatment of hearing loss.


Assuntos
Orelha Interna/embriologia , Fator de Crescimento Insulin-Like I/fisiologia , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Senescência Celular/fisiologia , Cóclea/citologia , Cóclea/crescimento & desenvolvimento , Desenvolvimento Embrionário/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA