Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuron ; 110(10): 1656-1670.e12, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35276083

RESUMO

Non-cell-autonomous mechanisms contribute to neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), in which astrocytes release unidentified factors that are toxic to motoneurons (MNs). We report here that mouse and patient iPSC-derived astrocytes with diverse ALS/FTD-linked mutations (SOD1, TARDBP, and C9ORF72) display elevated levels of intracellular inorganic polyphosphate (polyP), a ubiquitous, negatively charged biopolymer. PolyP levels are also increased in astrocyte-conditioned media (ACM) from ALS/FTD astrocytes. ACM-mediated MN death is prevented by degrading or neutralizing polyP in ALS/FTD astrocytes or ACM. Studies further reveal that postmortem familial and sporadic ALS spinal cord sections display enriched polyP staining signals and that ALS cerebrospinal fluid (CSF) exhibits increased polyP concentrations. Our in vitro results establish excessive astrocyte-derived polyP as a critical factor in non-cell-autonomous MN degeneration and a potential therapeutic target for ALS/FTD. The CSF data indicate that polyP might serve as a new biomarker for ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/genética , Animais , Astrócitos , Proteína C9orf72/genética , Meios de Cultivo Condicionados/farmacologia , Demência Frontotemporal/genética , Humanos , Camundongos , Neurônios Motores , Polifosfatos
2.
Ann Neurol ; 91(5): 716-729, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35178738

RESUMO

OBJECTIVE: The objective of this study is to develop a novel method for monitoring the integrity of motor neurons in vivo by quantifying net retrograde axonal transport. METHODS: The method uses single photon emission computed tomography to quantify retrograde transport to spinal cord of tetanus toxin fragment C (125 I-TTC) following intramuscular injection. We characterized the transport profiles in 3 transgenic mouse models carrying amyotrophic lateral sclerosis (ALS)-associated genes, aging mice, and SOD1G93A transgenic mice following CRISPR/Cas9 gene editing. Lastly, we studied the effect of prior immunization of tetanus toxoid on the transport profile of TTC. RESULTS: This technique defines a quantitative profile of net retrograde axonal transport of TTC in living mice. The profile is distinctly abnormal in transgenic SOD1G93A mice as young as 65 days (presymptomatic) and worsens with disease progression. Moreover, this method detects a distinct therapeutic benefit of gene editing in transgenic SOD1G93A mice well before other clinical parameters (eg, grip strength) show improvement. Symptomatic transgenic PFN1C71G/C71G ALS mice display gross reductions in net retrograde axonal transport, which is also disturbed in asymptomatic mice harboring a human C9ORF72 transgene with an expanded GGGGCC repeat motif. In wild-type mice, net retrograde axonal transport declines with aging. Lastly, prior immunization with tetanus toxoid does not preclude use of this assay. INTERPRETATION: This assay of net retrograde axonal transport has broad potential clinical applications and should be particularly valuable as a physiological biomarker that permits early detection of benefit from potential therapies for motor neuron diseases. ANN NEUROL 2022;91:716-729.


Assuntos
Esclerose Lateral Amiotrófica , Transporte Axonal , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/genética , Animais , Transporte Axonal/genética , Biomarcadores , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Profilinas , Medula Espinal/diagnóstico por imagem , Medula Espinal/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Toxoide Tetânico
3.
Mol Neurobiol ; 57(3): 1529-1541, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31784883

RESUMO

While protein synthesis in neurons is largely attributed to cell body and dendrites, the capability of synaptic regions to synthesize new proteins independently of the cell body has been widely demonstrated as an advantageous mechanism subserving synaptic plasticity. Thus, the contribution that local protein synthesis at synapses makes to physiology and pathology of brain plasticity may be more prevalent than initially thought. In this study, we tested if local protein synthesis at synapses is deregulated in the brains of TgCRND8 mice, an animal model for Alzheimer's disease (AD) overexpressing mutant human amyloid precursor protein (APP). To this end, we used synaptosomes as a model system to study the functionality of the synaptic regions in mouse brains. Our results showed that, while TgCRND8 mice exhibit early signs of brain inflammation and deficits in learning, the electrophoretic profile of newly synthesized proteins in their synaptosomes was subtly different from that of the control mice. Interestingly, APP itself was, in part, locally synthesized in the synaptosomes, underscoring the potential importance of local translation at synapses. More importantly, after the contextual fear conditioning, de novo synthesis of some individual proteins was significantly enhanced in the synaptosomes of control animals, but the TgCRND8 mice failed to display such synaptic modulation by training. Taken together, our results demonstrate that synaptic synthesis of proteins is impaired in the brain of a mouse model for AD, and raise the possibility that this deregulation may contribute to the early progression of the pathology.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Transtornos da Memória/metabolismo , Camundongos Transgênicos , Placa Amiloide/patologia , Sinaptossomos/metabolismo
4.
Mol Neurobiol ; 56(10): 6770-6776, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30919215

RESUMO

In a previous study (Mol Neurobiol 55:7476-7486, 2017), newly synthesized brain metabolic DNA (BMD) from rat subcellular fractions has been shown to behave as a DNA-RNA hybrid when analyzed in cesium gradients at early [3H] thymidine incorporation times but to assume the double-stranded configuration at later times. Conversely, BMD from purified nuclei displayed the dsDNA configuration even at early incorporation times. The results were interpreted to support the BMD origin by reverse transcription in the cytoplasm and its later acquisition of the double-stranded configuration before the partial transfer to the nuclei. This interpretation has now been confirmed by immunofluorescence analyses of newly synthesized BrdU-labeled BMD from the mouse brain that demonstrates its cytoplasmic localization and colocalization with DNA-RNA hybrids. In addition, BrdU-labeled BMD has been shown to colocalize with astroglial anti-GFAP antibodies and with presynaptic anti-synaptophysin antibodies.


Assuntos
Encéfalo/metabolismo , Citoplasma/metabolismo , DNA/metabolismo , Transcrição Gênica , Animais , Anticorpos/metabolismo , Bromodesoxiuridina/metabolismo , Núcleo Celular/metabolismo , Cérebro/metabolismo , Imunofluorescência , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Mitocôndrias/metabolismo , Ratos Wistar , Sinaptofisina/metabolismo
5.
Mol Neurobiol ; 56(1): 56-60, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29675577

RESUMO

The synthesis of brain metabolic DNA (BMD) is modulated by learning and circadian oscillations and is not involved in cell division or DNA repair. Data from rats have highlighted its prevalent association with the mitochondrial fraction and its lack of identity with mtDNA. These features suggested that BMD could be localized in synaptosomes that are the major contaminants of brain mitochondrial fractions. The hypothesis has been examined by immunochemical analyses of the large synaptosomes of squid optic lobes that are readily prepared and identified. Optic lobe slices were incubated with 5-bromo-2-deoxyuridine (BrdU) and the isolated synaptosomal fraction was exposed to the green fluorescent anti-BrdU antibody. This procedure revealed that newly synthesized BrdU-labeled BMD is present in a significant percent of the large synaptosomes derived from the nerve terminals of retinal photoreceptor neurons and in synaptosomal bodies of smaller size. Synaptosomal BMD synthesis was strongly inhibited by actinomycin D. In addition, treatment of the synaptosomal fraction with Hoechst 33258, a blue fluorescent dye specific for dsDNA, indicated that native DNA was present in all synaptosomes. The possible role of synaptic BMD is briefly discussed.


Assuntos
DNA/metabolismo , Decapodiformes/metabolismo , Sinaptossomos/metabolismo , Animais , DNA/biossíntese , Dactinomicina/farmacologia , Sinaptossomos/efeitos dos fármacos
6.
Front Cell Neurosci ; 9: 479, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26696835

RESUMO

Obesity and dietary fats are well known risk factors for the pathogenesis of neurodegenerative diseases. The analysis of specific markers, whose brain level can be affected by diet, might contribute to unveil the intersection between inflammation/obesity and neurodegeneration. Haptoglobin (Hpt) is an acute phase protein, which acts as antioxidant by binding free haemoglobin (Hb), thus neutralizing its pro-oxidative action. We previously demonstrated that Hpt plays critical functions in brain, modulating cholesterol trafficking in neuroblastoma cell lines, beta-amyloid (Aß) uptake by astrocyte, and limiting Aß toxicity on these cells. A major aim of this study was to evaluate whether a long term (12 or 24 weeks) high-fat diet (HFD) influences Hpt and Hb expression in rat hippocampus. We also assessed the development of obesity-induced inflammation by measuring hippocampal level of TNF-alpha, and the extent of protein oxidation by titrating nitro-tyrosine (N-Tyr). Hpt concentration was lower (p < 0.001) in hippocampus of HFD rats than in control animals, both in the 12 and in the 24 weeks fed groups. HFD was also associated in hippocampus with the increase of Hb level (p < 0.01), inflammation and protein oxidative modification, as evidenced by the increase in the concentration of TNF-alpha and nitro-tyrosine. In fact, TNF-alpha concentration was higher in rats receiving HFD for 12 (p < 0.01) or 24 weeks (p < 0.001) compared to those receiving the control diet. N-Tyr concentration was more elevated in hippocampus of HFD than in control rats in both 12 weeks (p = 0.04) and 24 weeks groups (p = 0.01), and a positive correlation between Hb and N-Tyr concentration was found in each group. Finally, we found that the treatment of the human glioblastoma-astrocytoma cell line U-87 MG with cholesterol and fatty acids, such as palmitic and linoleic acid, significantly impairs (p < 0.001) Hpt secretion in the extracellular compartment. We hypothesize that the HFD-dependent decrease of Hpt in hippocampus, as associated with Hb increase, might enhance the oxidative stress induced by free Hb. Altogether our data, identifying Hpt as a molecule modulated in the brain by dietary fats, may represent one of the first steps in the comprehension of the molecular mechanisms underlying the diet-related effects in the nervous system.

7.
Front Cell Neurosci ; 8: 212, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25140128

RESUMO

Alteration in cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative disorders. Apolipoprotein E (ApoE) is the major component of brain lipoproteins supporting cholesterol transport. We previously reported that the acute-phase protein Haptoglobin (Hpt) binds ApoE, and influences its function in blood cholesterol homeostasis. Major aim of this study was to investigate whether Hpt influences the mechanisms by which cholesterol is shuttled from astrocytes to neurons. In detail it was studied Hpt effect on ApoE-dependent cholesterol efflux from astrocytes and ApoE-mediated cholesterol incorporation in neurons. We report here that Hpt impairs ApoE-mediated cholesterol uptake in human neuroblastoma cell line SH-SY5Y, and limits the toxicity of a massive concentration of cholesterol for these cells, while it does not affect cholesterol efflux from the human glioblastoma-astrocytoma cell line U-87 MG. As aging is the most important non-genetic risk factor for various neurodegenerative disorders, and our results suggest that Hpt modulates ApoE functions, we evaluated the Hpt and ApoE expression profiles in cerebral cortex and hippocampus of adolescent (2 months), adult (5 and 8 months), and middle-aged (16 months) rats. Hpt mRNA level was higher in hippocampus of 8 and 16 month-old than in 2-month old rats (p < 0.05), and Hpt concentration increased with the age from adolescence to middle-age (p < 0.001). ApoE concentration, in hippocampus, was higher (p < 0.001) in 5 month-old rats compared to 2 month but did not further change with aging. No age-related changes of Hpt (protein and mRNA) were found in the cortex. Our results suggest that aging is associated with changes, particularly in the hippocampus, in the Hpt/ApoE ratio. Age-related changes in the concentration of Hpt were also found in human cerebrospinal fluids. The age-related changes might affect neuronal function and survival in brain, and have important implications in brain pathophysiology.

8.
J Neurosci Res ; 92(11): 1573-80, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24975129

RESUMO

Synaptosomal protein synthesis from rat brain is selectively increased by learning and is massively enhanced during the recovery period from brain ischemia. To lay the groundwork for identification of the involved synaptic elements, we examined the effects induced by varying the concentrations of extracellular cations and endogenous calcium. Most of the recorded rate response curves exhibited biphasic profiles that suggested the presence of more than one translation system. Because comparable profiles were obtained by fully inhibiting mitochondrial translation, the data indicated the involvement of cytoplasmic translation systems present in different synaptosomal classes. Their properties may be individually investigated by exploiting the partially inhibited conditions we have described. The identification of the synaptic elements from which they originated and their newly synthesized proteins will significantly expand our understanding of the synaptic contribution to brain plastic events.


Assuntos
Córtex Cerebral/ultraestrutura , Citoplasma/metabolismo , Metionina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinaptossomos/metabolismo , Animais , Calcimicina/farmacologia , Cálcio/metabolismo , Ionóforos de Cálcio/farmacologia , Cátions/farmacologia , Quelantes/farmacologia , Citoplasma/efeitos dos fármacos , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Inibidores Enzimáticos/farmacologia , Masculino , Biossíntese de Proteínas/efeitos dos fármacos , Ratos , Ratos Wistar , Sulfonamidas/farmacologia , Isótopos de Enxofre/metabolismo , Sinaptossomos/efeitos dos fármacos
10.
Dev Neurobiol ; 74(3): 279-91, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23853157

RESUMO

At the Nobel lecture for physiology in 1906, Ramón y Cajal famously stated that "the nerve elements possess reciprocal relationships in contiguity but not in continuity," summing up the neuron doctrine. Sixty years later, by the time the central dogma of molecular biology formulated the axis of genetic information flow from DNA to mRNA, and then to protein, it became obvious that neurons with extensive ramifications and long axons inevitably incur an innate problem: how can the effect of gene expression be extended from the nucleus to the remote and specific sites of the cell periphery? The most straightforward solution would be to deliver soma-produced proteins to the target sites. The influential discovery of axoplasmic flow has supported this scheme of protein supply. Alternatively, mRNAs can be dispatched instead of protein, and translated locally at the strategic target sites. Over the past decades, such a local system of protein synthesis has been demonstrated in dendrites, axons, and presynaptic terminals. Moreover, the local protein synthesis in neurons might even involve intercellular trafficking of molecules. The innovative concept of glia-neuron unit suggests that the local protein synthesis in the axonal and presynaptic domain of mature neurons is sustained by a local supply of RNAs synthesized in the surrounding glial cells and transferred to these domains. Here, we have reviewed some of the evidence indicating the presence of a local system of protein synthesis in axon terminals, and have examined its regulation in various model systems.


Assuntos
Expressão Gênica , Terminações Nervosas/metabolismo , Neurônios/metabolismo , Animais , Axônios/metabolismo , Biossíntese de Proteínas
11.
J Neurosci Res ; 91(1): 20-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23086702

RESUMO

We have previously shown that the local synthesis of two synaptic proteins of 66.5-kDa and 87.6-kDa is selectively enhanced in male adult rats trained for a two-way active avoidance task. We report here that a comparable but not identical response occurs in 2-year-old male rats trained for the same task. In the latter age group, the local synthesis of the 66.5-kDa protein markedly increases in cerebral cortex, brainstem, and cerebellum, with a somewhat lower increment in synthesis of the 87.6-kDa protein. On the other hand, the newly synthesized 87.6-kDa protein correlates with avoidances and escapes and inversely correlates with freezings in cerebral cortex and brainstem, whereas the correlations of the newly synthesized 66.5-kDa protein remain below significance. These correlative patterns are sharply at variance with those present in trained adult rats. Our data confirm that the local system of synaptic protein synthesis is selectively modulated by training and show that the synaptic response of old rats differs from that of adult rats as reflected in behavioral responses.


Assuntos
Envelhecimento/fisiologia , Encéfalo/metabolismo , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Biossíntese de Proteínas/fisiologia , Sinaptossomos/metabolismo , Animais , Eletroforese em Gel de Poliacrilamida , Masculino , Ratos , Ratos Sprague-Dawley
12.
J Neurosci Methods ; 203(2): 335-7, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22020116

RESUMO

Cytoplasmic protein synthesis of brain synaptosomes has generally been determined in the Ficoll purified fraction which contains fewer contaminating mitochondria, microsomes and myelin fragments than the parent P2 fraction. Using a highly selective assay of this activity we have compared the total translation activity and the specific activity of the proteins synthesized by either fraction in control rats and in rats trained for a two-way active avoidance task. In control rats the specific activity remained essentially the same in both fractions but in trained rats the value of the Ficoll fraction was markedly lower (38.5%) than in the P2 fraction. Furthermore, the total translation activity of the Ficoll fraction was 30% lower than in the P2 fraction in control rats and 62% lower in trained rats. These decrements indicate that a large proportion of active synaptosomes present in the P2 fraction is not recovered in the Ficoll fraction, notably in rats undergoing plastic brain changes. We conclude that cytoplasmic protein synthesis of brain synaptosomes is better preserved in the P2 fraction.


Assuntos
Encéfalo/metabolismo , Ficoll , Proteína P2 de Mielina/biossíntese , Proteína P2 de Mielina/isolamento & purificação , Sinaptossomos/metabolismo , Animais , Encéfalo/citologia , Fracionamento Celular , Ficoll/química , Ficoll/isolamento & purificação , Masculino , Proteômica/métodos , Ratos , Ratos Wistar , Frações Subcelulares/química , Frações Subcelulares/metabolismo
13.
Results Probl Cell Differ ; 48: 243-67, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19554280

RESUMO

The progressive philogenetic lengthening of axonal processes and the increase in complexity of terminal axonal arborizations markedly augmented the demands of the neuronal cytoplasmic mass on somatic gene expression. It is proposed that in an adaptive response to this challenge, novel gene expression functions developed in the axon compartment, consisting of axonal and presynaptic translation systems that rely on the delivery of transcripts synthesized in adjacent glial cells. Such intercellular mode of gene expression would allow more rapid plastic changes to occur in spatially restricted neuronal domains, down to the size of individual synapses. The cell body contribution to local gene expression in well-differentiated neurons remains to be defined. The history of this concept and the experimental evidence supporting its validity are critically discussed in this article. The merit of this perspective lies with the recognition that plasticity events represent a major occurrence in the brain, and that they largely occur at synaptic sites, including presynaptic endings.


Assuntos
Terminações Nervosas/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Proteínas/metabolismo , Animais , Humanos , Biossíntese de Proteínas , RNA/química , RNA/classificação
14.
J Neurosci Res ; 87(9): 1960-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19235900

RESUMO

We have recently demonstrated that brain plastic events significantly modify synaptic protein synthesis measured by the incorporation of [(35)S]methionine in brain synaptosomal proteins. Notably, in rats learning a two-way active avoidance task, the local synthesis of two synaptic proteins was selectively enhanced. Because this effect may be attributed to transcriptional modulation, we used reverse transcriptase-polymerase chain reaction methods to determine the content of discrete synaptosomal mRNAs in rats exposed to the same training protocol. Correlative analyses between behavioral responses and synaptosomal mRNA content showed that GAT-1 mRNA (a prevalent presynaptic component) correlates with avoidances and escapes in rat cerebellum, while glial fibrillary acid protein mRNA (an astrocytic component) correlates with freezings in cerebellum and cerebral cortex. These observations support the hypothesis that synaptic protein synthesis may be transcriptionally regulated. The cellular origin of synaptic transcripts is briefly discussed, with special regard to those present at large distances from neuron somas.


Assuntos
Encéfalo/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Proteína Glial Fibrilar Ácida/genética , Aprendizagem/fisiologia , Terminações Pré-Sinápticas/metabolismo , RNA Mensageiro/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/fisiologia , Encéfalo/ultraestrutura , Cerebelo/metabolismo , Cerebelo/ultraestrutura , Cérebro/metabolismo , Cérebro/ultraestrutura , Masculino , Neurônios/metabolismo , Neurônios/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Wistar , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura , Ativação Transcricional/fisiologia
15.
Physiol Rev ; 88(2): 515-55, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18391172

RESUMO

Neurons have complex and often extensively elongated processes. This unique cell morphology raises the problem of how remote neuronal territories are replenished with proteins. For a long time, axonal and presynaptic proteins were thought to be exclusively synthesized in the cell body, which delivered them to peripheral sites by axoplasmic transport. Despite this early belief, protein has been shown to be synthesized in axons and nerve terminals, substantially alleviating the trophic burden of the perikaryon. This observation raised the question of the cellular origin of the peripheral RNAs involved in protein synthesis. The synthesis of these RNAs was initially attributed to the neuron soma almost by default. However, experimental data and theoretical considerations support the alternative view that axonal and presynaptic RNAs are also transcribed in the flanking glial cells and transferred to the axon domain of mature neurons. Altogether, these data suggest that axons and nerve terminals are served by a distinct gene expression system largely independent of the neuron cell body. Such a local system would allow the neuron periphery to respond promptly to environmental stimuli. This view has the theoretical merit of extending to axons and nerve terminals the marginalized concept of a glial supply of RNA (and protein) to the neuron cell body. Most long-term plastic changes requiring de novo gene expression occur in these domains, notably in presynaptic endings, despite their intrinsic lack of transcriptional capacity. This review enlightens novel perspectives on the biology and pathobiology of the neuron by critically reviewing these issues.


Assuntos
Axônios/metabolismo , Neuroglia/metabolismo , Biossíntese de Proteínas , RNA/biossíntese , Animais , RNA/metabolismo
16.
Riv Biol ; 100(2): 203-19, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17987559

RESUMO

In the last few years, the long-standing opinion that axonal and presynaptic proteins are exclusively derived from the neuron cell body has been substantially modified by the demonstration that active systems of protein synthesis are present in axons and nerve terminals. These observations have raised the issue of the cellular origin of the involved RNAs, which has been generally attributed to the neuron soma. However, data gathered in a number of model systems indicated that axonal RNAs are synthesized in the surrounding glial cells. More recent experiments on the perfused squid giant axon have definitively proved that axoplasmic RNAs are transcribed in periaxonal glia. Their delivery to the axon occurs by a modulatory mechanism based on the release of neurotransmitters from the stimulated axon and on their binding to glial receptors. In additional experiments on squid optic lobe synaptosomes, presynaptic RNA has been also shown to be synthesized locally, presumably in nearby glia. Together with a wealth of literature data, these observations indicate that axons and nerve terminals are endowed with a local system of gene expression that supports the maintenance and plasticity of these neuronal domains.


Assuntos
Axônios , Neuroglia/fisiologia , Terminações Pré-Sinápticas , RNA/genética , Transcrição Gênica
17.
Eur J Neurosci ; 25(2): 341-50, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17284174

RESUMO

The presence of active systems of protein synthesis in axons and nerve endings raises the question of the cellular origin of the corresponding RNAs. Our present experiments demonstrate that, besides a possible derivation from neuronal cell bodies, axoplasmic RNAs originate in periaxonal glial cells and presynaptic RNAs derive from nearby cells, presumably glial cells. Indeed, in perfused squid giant axons, delivery of newly synthesized RNA to the axon perfusate is strongly stimulated by axonal depolarization or agonists of glial glutamate and acetylcholine receptors. Likewise, incubation of squid optic lobe slices with [3H]uridine leads to a marked accumulation of [3H]RNA in the large synaptosomes derived from the nerve terminals of retinal photoreceptor neurons. As the cell bodies of these neurons lie outside the optic lobe, the data demonstrate that presynaptic RNA is locally synthesized, presumably by perisynaptic glial cells. Overall, our results support the view that axons and presynaptic regions are endowed with local systems of gene expression which may prove essential for the maintenance and plasticity of these extrasomatic neuronal domains.


Assuntos
Axônios/metabolismo , Decapodiformes/citologia , Terminações Pré-Sinápticas/metabolismo , RNA/metabolismo , Animais , Autorradiografia/métodos , Axônios/ultraestrutura , Decapodiformes/fisiologia , Técnicas In Vitro , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Lobo Óptico de Animais não Mamíferos/metabolismo , Lobo Óptico de Animais não Mamíferos/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Biossíntese de Proteínas/fisiologia , Sinaptossomos/metabolismo , Fatores de Tempo
18.
Brain Res ; 1132(1): 148-57, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17178114

RESUMO

Synaptosomes from rat brain have long been used to investigate the properties of synaptic protein synthesis. Comparable analyses have now been made in adult male rats trained for a two-way active avoidance task to examine the hypothesis of its direct participation in brain plastic events. Using Ficoll-purified synaptosomes from neocortex, hippocampus and cerebellum, our data indicate that the capacity of synaptosomal protein synthesis and the specific activity of newly synthesized proteins were not different in trained rats in comparison with home-caged control rats. On the other hand, the synthesis of two proteins of 66.5 kDa and 87.6 kDa separated by SDS-PAGE and analyzed by quantitative densitometry was selectively enhanced in trained rats. In addition, the synthesis of the 66.5 kDa protein, but not of the 87.6 kDa protein, correlated with avoidances and escapes and inversely correlated with freezings in the neocortex, while in the cerebellum it correlated with avoidances and escapes. The data demonstrate the participation of synaptic protein synthesis in plastic events of behaving rats, and the selective, region-specific modulation of the synthesis of a synaptic 66.5 kDa protein by the newly acquired avoidance response and by the reprogramming of innate neural circuits subserving escape and freezing responses.


Assuntos
Encéfalo/metabolismo , Aprendizagem/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Terminações Pré-Sinápticas/metabolismo , Sinaptossomos/metabolismo , Animais , Aprendizagem da Esquiva/fisiologia , Cerebelo/metabolismo , Hipocampo/metabolismo , Masculino , Peso Molecular , Neocórtex/metabolismo , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/isolamento & purificação , Ratos , Ratos Wistar , Membranas Sinápticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA