Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(38): 11771-6, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26351686

RESUMO

Maturation of cytochrome oxidases is a complex process requiring assembly of several subunits and adequate uptake of the metal cofactors. Two orthologous Sco proteins (Sco1 and Sco2) are essential for the correct assembly of the dicopper CuA site in the human oxidase, but their function is not fully understood. Here, we report an in vitro biochemical study that shows that Sco1 is a metallochaperone that selectively transfers Cu(I) ions based on loop recognition, whereas Sco2 is a copper-dependent thiol reductase of the cysteine ligands in the oxidase. Copper binding to Sco2 is essential to elicit its redox function and as a guardian of the reduced state of its own cysteine residues in the oxidizing environment of the mitochondrial intermembrane space (IMS). These results provide a detailed molecular mechanism for CuA assembly, suggesting that copper and redox homeostasis are intimately linked in the mitochondrion.


Assuntos
Cobre/metabolismo , Dissulfetos/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Transporte de Elétrons , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Chaperonas Moleculares , Dados de Sequência Molecular , Oxirredução , Engenharia de Proteínas , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Espectroscopia de Prótons por Ressonância Magnética , Solubilidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
J Mol Biol ; 425(3): 594-608, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23207295

RESUMO

The functional role of unstructured protein domains is an emerging field in the frame of intrinsically disordered proteins. The involvement of intrinsically disordered domains (IDDs) in protein targeting and biogenesis processes in mitochondria is so far not known. Here, we have characterized the structural/dynamic and functional properties of an IDD of the sulfhydryl oxidase ALR (augmenter of liver regeneration) located in the intermembrane space of mitochondria. At variance to the unfolded-to-folded structural transition of several intrinsically disordered proteins, neither substrate recognition events nor redox switch of its shuttle cysteine pair is linked to any such structural change. However, this unstructured domain performs a dual function in two cellular compartments: it acts (i) as a mitochondrial targeting signal in the cytosol and (ii) as a crucial recognition site in the disulfide relay system of intermembrane space. This domain provides an exciting new paradigm for IDDs ensuring two distinct functions that are linked to intracellular organelle targeting.


Assuntos
Proteínas/química , Proteínas/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Oxirredução , Conformação Proteica , Saccharomyces cerevisiae/enzimologia
3.
ACS Chem Biol ; 7(4): 707-14, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22296668

RESUMO

The interaction of Mia40 with Erv1/ALR is central to the oxidative protein folding in the intermembrane space of mitochondria (IMS) as Erv1/ALR oxidizes reduced Mia40 to restore its functional state. Here we address the role of Mia40 in the import and maturation of Erv1/ALR. The C-terminal FAD-binding domain of Erv1/ALR has an essential role in the import process by creating a transient intermolecular disulfide bond with Mia40. The action of Mia40 is selective for the formation of both intra and intersubunit structural disulfide bonds of Erv1/ALR, but the complete maturation process requires additional binding of FAD. Both of these events must follow a specific sequential order to allow Erv1/ALR to reach the fully functional state, illustrating a new paradigm for protein maturation in the IMS.


Assuntos
Redutases do Citocromo/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Membranas Mitocondriais/metabolismo , Dissulfetos , Humanos , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Dobramento de Proteína , Transporte Proteico
4.
J Am Chem Soc ; 134(3): 1442-5, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22224850

RESUMO

The oxidative folding mechanism in the intermembrane space of human mitochondria underpins a disulfide relay system consisting of the import receptor Mia40 and the homodimeric FAD-dependent thiol oxidase ALR. The flavoprotein ALR receives two electrons per subunit from Mia40, which are then donated through one-electron reactions to two cytochrome c molecules, thus mediating a switch from two-electron to one-electron transfer. We dissect here the mechanism of the electron flux within ALR, characterizing at the atomic level the ALR intermediates that allow electrons to rapidly flow to cytochrome c. The intermediate critical for the electron-transfer process implies the formation of a specific inter-subunit disulfide which exclusively allows electron flow from Mia40 to FAD. This finding allows us to present a complete model for the electron-transfer pathway in ALR.


Assuntos
Redutases do Citocromo/metabolismo , Citocromos c/metabolismo , Dissulfetos/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Dicroísmo Circular , Redutases do Citocromo/química , Citocromos c/química , Dissulfetos/química , Transporte de Elétrons , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Espectrofotometria Ultravioleta
5.
J Biol Chem ; 286(39): 34382-90, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21816817

RESUMO

Human Cox17 is the mitochondrial copper chaperone responsible for supplying copper ions, through the assistance of Sco1, Sco2, and Cox11, to cytochrome c oxidase, the terminal enzyme of the mitochondrial energy-transducing respiratory chain. It consists of a coiled coil-helix-coiled coil-helix domain stabilized by two disulfide bonds and binds one copper(I) ion through a Cys-Cys motif. Here, the structures and the backbone mobilities of two Cox17 mutated forms with only one interhelical disulfide bond have been analyzed. It appears that the inner disulfide bond (formed by Cys-36 and Cys-45) stabilizes interhelical hydrophobic interactions, providing a structure with essentially the same structural dynamic properties of the mature Cox17 state. On the contrary, the external disulfide bond (formed by Cys-26 and Cys-55) generates a conformationally flexible α-helical protein, indicating that it is not able to stabilize interhelical packing contacts, but is important for structurally organizing the copper-binding site region.


Assuntos
Proteínas de Transporte/química , Dissulfetos/química , Sítios de Ligação , Proteínas de Transporte/metabolismo , Cobre/química , Cobre/metabolismo , Proteínas de Transporte de Cobre , Dissulfetos/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
6.
Proc Natl Acad Sci U S A ; 108(12): 4811-6, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21383138

RESUMO

Oxidative protein folding in the mitochondrial intermembrane space requires the transfer of a disulfide bond from MIA40 to the substrate. During this process MIA40 is reduced and regenerated to a functional state through the interaction with the flavin-dependent sulfhydryl oxidase ALR. Here we present the mechanistic basis of ALR-MIA40 interaction at atomic resolution by biochemical and structural analyses of the mitochondrial ALR isoform and its covalent mixed disulfide intermediate with MIA40. This ALR isoform contains a folded FAD-binding domain at the C-terminus and an unstructured, flexible N-terminal domain, weakly and transiently interacting one with the other. A specific region of the N-terminal domain guides the interaction with the MIA40 substrate binding cleft (mimicking the interaction of the substrate itself), without being involved in the import of ALR. The hydrophobicity-driven binding of this region ensures precise protein-protein recognition needed for an efficient electron transfer process.


Assuntos
Redutases do Citocromo/química , Flavina-Adenina Dinucleotídeo/química , Proteínas de Transporte da Membrana Mitocondrial/química , Sítios de Ligação , Redutases do Citocromo/metabolismo , Transporte de Elétrons/fisiologia , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Isoenzimas/química , Isoenzimas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Estrutura Terciária de Proteína , Especificidade por Substrato/fisiologia
7.
Proc Natl Acad Sci U S A ; 107(47): 20190-5, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21059946

RESUMO

Several proteins of the mitochondrial intermembrane space are targeted by internal targeting signals. A class of such proteins with α-helical hairpin structure bridged by two intramolecular disulfides is trapped by a Mia40-dependent oxidative process. Here, we describe the oxidative folding mechanism underpinning this process by an exhaustive structural characterization of the protein in all stages and as a complex with Mia40. Two consecutive induced folding steps are at the basis of the protein-trapping process. In the first one, Mia40 functions as a molecular chaperone assisting α-helical folding of the internal targeting signal of the substrate. Subsequently, in a Mia40-independent manner, folding of the second substrate helix is induced by the folded targeting signal functioning as a folding scaffold. The Mia40-induced folding pathway provides a proof of principle for the general concept that internal targeting signals may operate as a folding nucleus upon compartment-specific activation.


Assuntos
Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Dobramento de Proteína , Transporte Proteico/fisiologia , Proteínas de Transporte/química , Proteínas de Transporte de Cobre , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Químicos , Chaperonas Moleculares/química , Complexos Multiproteicos/química , Ressonância Magnética Nuclear Biomolecular
8.
Nat Struct Mol Biol ; 16(2): 198-206, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19182799

RESUMO

MIA40 has a key role in oxidative protein folding in the mitochondrial intermembrane space. We present the solution structure of human MIA40 and its mechanism as a catalyst of oxidative folding. MIA40 has a 66-residue folded domain made of an alpha-helical hairpin core stabilized by two structural disulfides and a rigid N-terminal lid, with a characteristic CPC motif that can donate its disulfide bond to substrates. The CPC active site is solvent-accessible and sits adjacent to a hydrophobic cleft. Its second cysteine (Cys55) is essential in vivo and is crucial for mixed disulfide formation with the substrate. The hydrophobic cleft functions as a substrate binding domain, and mutations of this domain are lethal in vivo and abrogate binding in vitro. MIA40 represents a thioredoxin-unrelated, minimal oxidoreductase, with a facile CPC redox active site that ensures its catalytic function in oxidative folding in mitochondria.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Sequência de Aminoácidos , Humanos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Conformação Proteica , Dobramento de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA