Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 152(17): 174701, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32384854

RESUMO

Methods to control internal interfaces in lithium ion batteries often require sophisticated procedures to deposit coating layers or introduce interphases, which are typically difficult to apply. This particularly holds for protection from parasitic reactions at the current collector, which reflects an internal interface for the electrode composite material and the electrolyte. In this work, electrolyte formulations based on aliphatic cyclic nitriles, cyclopentane-1-carbonitrile and cyclohexane-1-carbonitrile, are introduced that allow for successful suppression of aluminum dissolution and control of internal interfaces under application-relevant conditions. Such nitrile-based electrolytes show higher intrinsic oxidative and thermal stabilities as well as similar capacity retentions in lithium nickel-manganese-cobalt oxide LiNi3/5Mn1/5Co1/5O2 (NMC622)||graphite based full cells compared to the state-of-the-art organic carbonate-based electrolytes, even when bis(trifluoro-methane)sulfonimide lithium salt is utilized. Moreover, the importance of relative permittivity, degree of ion dissociation, and viscosity of the applied electrolyte formulations for the protection of current collector interfaces is emphasized.

2.
Angew Chem Int Ed Engl ; 58(45): 15978-16000, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31339214

RESUMO

Further enhancement in the energy densities of rechargeable lithium batteries calls for novel cell chemistry with advanced electrode materials that are compatible with suitable electrolytes without compromising the overall performance and safety, especially when considering high-voltage applications. Significant advancements in cell chemistry based on traditional organic carbonate-based electrolytes may be successfully achieved by introducing fluorine into the salt, solvent/cosolvent, or functional additive structure. The combination of the benefits from different constituents enables optimization of the electrolyte and battery chemistry toward specific, targeted applications. This Review aims to highlight key research activities and technical developments of fluorine-based materials for aprotic non-aqueous solvent-based electrolytes and their components along with the related ongoing scientific challenges and limitations. Ionic liquid-based electrolytes containing fluorine will not be considered in this Review.

3.
Phys Chem Chem Phys ; 20(24): 16579-16591, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29873343

RESUMO

To unravel mechanistic details of the ion transport in liquid electrolytes, blends of the ionic liquid (IL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Pyr14TFSI), ethylene carbonate (EC) and dimethyl carbonate (DMC) with the conducting salts lithium hexafluorophosphate (LiPF6) and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) were investigated as a function of the IL concentration. Electrochemical impedance, Pulsed Field Gradient Nuclear Magnetic Resonance (PFG NMR) and Raman spectroscopy supported by Molecular Dynamics (MD) simulations allowed the structural and dynamic correlations of the ion motions to be probed. Remarkably, we identified that though the individual correlations among different ion types exhibit a clear concentration dependence, their net effect is nearly constant throughout the entire concentration range, resulting in approximately equal transport and transference numbers, despite a monitored cross-over from carbonate-based lithium coordination to a TFSI-based ion coordination. In addition, though dynamical ion correlation could be found, the absolute values of the ionic conductivity are essentially determined by the overall viscosity of the electrolyte. The IL/carbonate blends with a Pyr14TFSI fraction of ∼10 wt% are found to be promising electrolyte solvents, with ionic conductivities and lithium ion transference numbers comparable to those of standard carbonate-based electrolytes while the thermal and electrochemical stabilities are considerably improved. In contrast, the choice of the conducting salt only marginally affects the transport properties.

4.
Phys Chem Chem Phys ; 19(24): 16078-16086, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28597888

RESUMO

Increasing the operation voltage of electrochemical energy storage devices is a viable measure to realize higher specific energies and energy densities. A sufficient oxidative stability of electrolytes is the predominant requirement for successful high voltage applicability. The common method to investigate oxidative stability of LIB electrolytes is related to determination of the electrochemical stability window (ESW), on e.g. Pt or LiMn2O4 electrodes. However, the transferability of the obtained results to practical systems is questionable for several reasons. In this work, we evaluated the validity of the potentiodynamic based ESW method by comparing the obtained data with the results of galvanostatic based techniques, applied on commercial positive electrodes. We demonstrated that the oxidative stabilities, determined by the two techniques, are in good accordance with each other. However, the investigation of electrolytes being incompatible to Li metal, renders conventional ESW measurements useless when metallic Li is used as counter - and reference electrode in the ESW setup. For this reason, we introduced an alternative setup based on Li4Ti5O12 full cells. On the example of a butyronitrile-based electrolyte, we finally demonstrated that this electrolyte is not only reductively but also oxidatively less stable than common LiPF6/organic carbonate based electrolytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA