Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Evol Biol ; 14(1): 47, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24621140

RESUMO

BACKGROUND: It is often proposed that females should select genetically dissimilar mates to maximize offspring genetic diversity and avoid inbreeding. Several recent studies have provided mixed evidence, however, and in some instances females seem to prefer genetically similar males. A preference for genetically similar mates can be adaptive if outbreeding depression is more harmful than inbreeding depression or if females gain inclusive fitness benefits by mating with close kin. Here, we investigated genetic compatibility and mating patterns in an insular population of house sparrow (Passer domesticus), over a three-year period, using 12 microsatellite markers and one major histocompability complex (MHC) class I gene. Given the small population size and the distance from the mainland, we expected a reduced gene flow in this insular population and we predicted that females would show mating preferences for genetically dissimilar mates. RESULTS: Contrary to our expectation, we found that offspring were less genetically diverse (multi-locus heterozygosity) than expected under a random mating, suggesting that females tended to mate with genetically similar males. We found high levels of extra-pair paternity, and offspring sired by extra-pair males had a better fledging success than those sired by the social male. Again, unexpectedly, females tended to be more closely related to extra-pair mates than to their social mates. Our results did not depend on the type of genetic marker used, since microsatellites and MHC genes provided similar results, and we found only little evidence for MHC-dependent mating patterns. CONCLUSIONS: These results are in agreement with the idea that mating with genetically similar mates can either avoid the disruption of co-adapted genes or confer a benefit in terms of kin selection.


Assuntos
Preferência de Acasalamento Animal , Pardais/genética , Animais , Feminino , França , Genes MHC Classe I , Variação Genética , Endogamia , Ilhas , Masculino , Repetições de Microssatélites , Pardais/fisiologia
2.
Int J Parasitol ; 43(10): 861-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23792297

RESUMO

There is an increasing understanding of the context-dependent nature of parasite virulence. Variation in parasite virulence can occur when infected individuals compete with conspecifics that vary in infection status; virulence may be higher when competing with uninfected competitors. In vertebrates with social hierarchies, we propose that these competition-mediated costs of infection may also vary with social status. Dominant individuals have greater competitive ability than competing subordinates, and consequently may pay a lower prevalence-mediated cost of infection. In this study we investigated whether costs of malarial infection were affected by the occurrence of the parasite in competitors and social status in domestic canaries (Serinus canaria). We predicted that infected subordinates competing with non-infected dominants would pay higher costs than infected subordinates competing with infected dominants. We also predicted that these occurrence-mediated costs of infection would be ameliorated in infected dominant birds. We found that social status and the occurrence of parasites in competitors significantly interacted to change haematocrit in infected birds. Namely, subordinate and dominant infected birds differed in haematocrit depending on the infection status of their competitors. However, in contrast to our prediction, dominants fared better with infected subordinates, whereas subordinates fared better with uninfected dominants. Moreover, we found additional effects of parasite occurrence on mortality in canaries. Ultimately, we provide evidence for costs of parasitism mediated by social rank and the occurrence of parasites in competitors in a vertebrate species. This has important implications for our understanding of the evolutionary processes that shape parasite virulence and group living.


Assuntos
Canários/fisiologia , Canários/parasitologia , Malária Aviária/patologia , Animais , Comportamento Animal , Hematócrito , Relações Interpessoais , Análise de Sobrevida
3.
Int J Parasitol ; 40(12): 1447-53, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20570591

RESUMO

Parasites are known to exert strong selection pressures on their hosts and, as such, favour the evolution of defence mechanisms. The negative impact of parasites on their host can have substantial consequences in terms of population persistence and the epidemiology of the infection. In natural populations, however, it is difficult to assess the cost of infection while controlling for other potentially confounding factors. For instance, individuals are repeatedly exposed to a variety of parasite strains, some of which can elicit immunological memory, further protecting the host from subsequent infections. Cost of infection is, therefore, expected to be particularly strong for primary infections and to decrease for individuals surviving the first infectious episode that are re-exposed to the pathogen. We tested this hypothesis experimentally using avian malaria parasites (Plasmodium relictum-lineage SGS1) and domestic canaries (Serinus canaria) as a model. Hosts were infected with a controlled dose of P. relictum as a primary infection and control birds were injected with non-infected blood. The changes in haematocrit and body mass were monitored during a 20 day period. A protein of the acute phase response (haptoglobin) was assessed as a marker of the inflammatory response mounted in response to the infection. Parasite intensity was also monitored. Surviving birds were then re-infected 37 days post primary infection. In agreement with the predictions, we found that primary infected birds paid a substantially higher cost in terms of infection-induced reduction in haematocrit compared with re-exposed birds. After the secondary infection, re-exposed hosts were also able to clear the infection at a faster rate than after the primary infection. These results have potential consequences for the epidemiology of avian malaria, since birds re-exposed to the pathogen can maintain parasitemia with low fitness costs, allowing the persistence of the pathogen within the host population.


Assuntos
Canários/parasitologia , Malária Aviária/parasitologia , Plasmodium/fisiologia , Animais , Plasmodium/genética , Plasmodium/isolamento & purificação
4.
Chromosome Res ; 18(5): 563-74, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20582567

RESUMO

The African pygmy mouse, Mus minutoides, displays extensive Robertsonian (Rb) diversity. The two extremes of the karyotypic range are found in South Africa, with populations carrying 2n = 34 and 2n = 18. In order to reconstruct the scenario of chromosomal evolution of M. minutoides and test the performance of Rb fusions in resolving fine-scale phylogenetic relationships, we first describe new karyotypes, and then perform phylogenetic analyses by two independent methods, using respectively mitochondrial cytochrome b sequences and chromosomal rearrangements as markers. The molecular and chromosomal phylogenies were in perfect congruence, providing strong confidence both for the tree topology and the chronology of chromosomal rearrangements. The analysis supports a division of South African specimens into two clades showing opposite trends of chromosomal evolution, one containing all specimens with 34 chromosomes (karyotypic stasis) and the other grouping all mice with 18 chromosomes that have further diversified by the fixation of different Rb fusions (extensive karyotypic reshuffling). The results confirm that Rb fusions are by far the predominant rearrangement in M. minutoides but strongly suggest that recurrent whole-arm reciprocal translocations have also shaped this genome.


Assuntos
Cromossomos de Mamíferos/genética , Cariotipagem , Camundongos/genética , Mitocôndrias/genética , Animais , Evolução Biológica , Aberrações Cromossômicas , Filogenia , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA