Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732671

RESUMO

The study of materials for space exploration is one of the most interesting targets of international space agencies. An essential tool for realizing light junctions is epoxy adhesive (EA), which provides an elastic and robust material with a complex mesh of polymeric chains and crosslinks. In this work, a study of the structural and chemical modification of a commercial two-part flexible EA (3M™ Scotch-Weld™ EC-2216 B/A Gray), induced by 60Co gamma radiation, is presented. Combining different spectroscopic techniques, such as the spectroscopic Fourier transform infrared spectroscopy (FTIR), the THz time-domain spectroscopy (TDS), and the electron paramagnetic resonance (EPR), a characterization of the EA response in different regions of the electromagnetic spectrum is performed, providing valuable information about the structural and chemical properties of the polymers before and after irradiation. A simultaneous dissociation of polymeric chain and crosslinking formation is observed.The polymer is not subject to structural modification at an absorbed dose of 10 kGy, in which only transient free radicals are observed. Differently, between 100 and 500 kGy, a gradual chemical degradation of the samples is observed together with a broad and long-living EPR signal appearance. This study also provides a microscopic characterization of the material useful for the mechanism evaluation of system degradation.

2.
Nano Lett ; 24(3): 905-913, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38197790

RESUMO

Lead halide perovskite nanocrystals (LHP-NCs) embedded in polymeric hosts are gaining attention as scalable and low-cost scintillation detectors for technologically relevant applications. Despite rapid progress, little is currently known about the scintillation properties and stability of LHP-NCs prepared by the ligand assisted reprecipitation (LARP) method, which allows mass scalability at room temperature unmatched by any other type of nanostructure, and the implications of incorporating LHP-NCs into polyacrylate hosts are still largely debated. Here, we show that LARP-synthesized CsPbBr3 NCs are comparable to particles from hot-injection routes and unravel the dual effect of polyacrylate incorporation, where the partial degradation of LHP-NCs luminescence is counterbalanced by the passivation of electron-poor defects by the host acrylic groups. Experiments on NCs with tailored surface defects show that the balance between such antithetical effects of polymer embedding is determined by the surface defect density of the NCs and provide guidelines for further material optimization.

3.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068942

RESUMO

Nanoparticles are being increasingly studied to enhance radiation effects. Among them, nanodiamonds (NDs) are taken into great consideration due to their low toxicity, inertness, chemical stability, and the possibility of surface functionalization. The objective of this study is to explore the influence of the chemical/physical properties of NDs on cellular radiosensitivity to combined treatments with radiation beams of different energies. DAOY, a human radioresistant medulloblastoma cell line was treated with NDs-differing for surface modifications [hydrogenated (H-NDs) and oxidized (OX-NDs)], size, and concentration-and analysed for (i) ND internalization and intracellular localization, (ii) clonogenic survival after combined treatment with different radiation beam energies and (iii) DNA damage and apoptosis, to explore the nature of ND-radiation biological interactions. Results show that chemical/physical characteristics of NDs are crucial in determining cell toxicity, with hydrogenated NDs (H-NDs) decreasing either cellular viability when administered alone, or cell survival when combined with radiation, depending on ND size and concentration, while OX-NDs do not. Also, irradiation at high energy (γ-rays at 1.25 MeV), in combination with H-NDs, is more efficient in eliciting radiosensitisation when compared to irradiation at lower energy (X-rays at 250 kVp). Finally, the molecular mechanisms of ND radiosensitisation was addressed, demonstrating that cell killing is mediated by the induction of Caspase-3-dependent apoptosis that is independent to DNA damage. Identifying the optimal combination of ND characteristics and radiation energy has the potential to offer a promising therapeutic strategy for tackling radioresistant cancers using H-NDs in conjunction with high-energy radiation.


Assuntos
Nanodiamantes , Neoplasias , Humanos , Nanodiamantes/química , Tolerância a Radiação , Sobrevivência Celular , Neoplasias/radioterapia
4.
Front Plant Sci ; 14: 1266199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877080

RESUMO

Introduction: Future long-term space missions will focus to the solar system exploration, with the Moon and Mars as leading goals. Plant cultivation will provide fresh food as a healthy supplement to astronauts' diet in confined and unhealthy outposts. Ionizing radiation (IR) are a main hazard in outer space for their capacity to generate oxidative stress and DNA damage. IR is a crucial issue not only for human survival, but also for plant development and related value-added fresh food harvest. To this end, efforts to figure out how biofortification of plants with antioxidant metabolites (such as anthocyanins) may contribute to improve their performances in space outposts are needed. Methods: MicroTom plants genetically engineered to express the Petunia hybrida PhAN4 gene, restoring the biosynthesis of anthocyanins in tomato, were used. Seeds and plants from wild type and engineered lines AN4-M and AN4-P2 were exposed to IR doses that they may experience during a long-term space mission, simulated through the administration of gamma radiation. Plant response was continuously evaluated along life cycle by a non-disturbing/non-destructive monitoring of biometric and multiparametric fluorescence-based indices at both phenotypic and phenological levels, and indirectly measuring changes occurring at the primary and secondary metabolism level. Results: Responses to gamma radiation were influenced by the phenological stage, dose and genotype. Wild type and engineered plants did not complete a seed-to-seed cycle under the exceptional condition of 30 Gy absorbed dose, but were able to cope with 0.5 and 5 Gy producing fruits and vital seeds. In particular, the AN4-M seeds and plants showed advantages over wild type: negligible variation of fluorimetric parameters related to primary metabolism, no alteration or improvement of yield traits at maturity while maintaining smaller habitus than wild type, biosynthesis of anthocyanins and maintained levels of these compounds compared to non-irradiated controls of the same age. Discussion: These findings may be useful in understanding phenotypic effects of IR on plant growth in space, and lead to the exploitation of new breeding efforts to optimize plant performances to develop appropriate ideotypes for future long-term space exploration extending the potential of plants to serve as high-value product source.

5.
ACS Energy Lett ; 8(9): 3883-3894, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37705701

RESUMO

The use of scintillators for the detection of ionizing radiation is a critical aspect in many fields, including medicine, nuclear monitoring, and homeland security. Recently, lead halide perovskite nanocrystals (LHP-NCs) have emerged as promising scintillator materials. However, the difficulty of affordably upscaling synthesis to the multigram level and embedding NCs in optical-grade nanocomposites without compromising their optical properties still limits their widespread use. In addition, fundamental aspects of the scintillation mechanisms are not fully understood, leaving the scientific community without suitable fabrication protocols and rational guidelines for the full exploitation of their potential. In this work, we realize large polyacrylate nanocomposite scintillators based on CsPbBr3 NCs, which are synthesized via a novel room temperature, low waste turbo-emulsification approach, followed by their in situ transformation during the mass polymerization process. The interaction between NCs and polymer chains strengthens the scintillator structure, homogenizes the particle size distribution and passivates NC defects, resulting in nanocomposite prototypes with luminescence efficiency >90%, exceptional radiation hardness, 4800 ph/MeV scintillation yield even at low NC loading, and ultrafast response time, with over 30% of scintillation occurring in the first 80 ps, promising for fast-time applications in precision medicine and high-energy physics. Ultrafast radioluminescence and optical spectroscopy experiments using pulsed synchrotron light further disambiguate the origin of the scintillation kinetics as the result of charged-exciton and multiexciton recombination formed under ionizing excitation. This highlights the role of nonradiative Auger decay, whose potential impact on fast timing applications we anticipate via a kinetic model.

6.
Environ Microbiol ; 25(12): 2931-2942, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37775957

RESUMO

Black fungi are among the most resistant organisms to ionizing radiation on Earth. However, our current knowledge is based on studies on a few isolates, while the overall radioresistance limits across this microbial group and the relationship with local environmental conditions remain largely undetermined. To address this knowledge gap, we assessed the survival of 101 strains of black fungi isolated across a worldwide spatial distribution to gamma radiation doses up to 100 kGy. We found that intra and inter-specific taxonomy, UV radiation, and precipitation levels primarily influence the radioresistance in black fungi. Altogether, this study provides insights into the adaptive mechanisms of black fungi to extreme environments and highlights the role of local adaptation in shaping the survival capabilities of these extreme-tolerant organisms.


Assuntos
Fungos , Radiação Ionizante , Fungos/genética , Raios gama , Geografia
7.
Insects ; 14(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37623391

RESUMO

The stink bug, Bagrada hilaris, is a pest of mainly Brassicaceae crops. It is native to Africa and Asia and was recently reported as invasive in the southwestern part of the USA and in South America. There are no mitigation programs in place that do not involve pesticides. Therefore, much attention has recently been paid to the study of this species in order to identify sustainable and effective control strategies, such as the Sterile Insect Technique (SIT). In order to evaluate the suitability of the SIT on this pest, the mechanism of post-copulatory sperm competition was investigated. This is a polyandrous species, and it is thus important to understand whether irradiated males are able to compete with wild, e.g., non-irradiated, males for sperm competition after matings. Sperm competition was studied by sequentially mating a healthy virgin female first with a non-irradiated male, and then with a γ-irradiated (Co-60) one, and again in the opposite order. Males were irradiated at three different doses: 60, 80, and 100 Gy. The fecundity and fertility of the females, in the two orders of mating, were scored in order to perform an initial assessment of the success of sperm competition with a P2 index. Sperm from the non-irradiated male were utilized at the lowest irradiation doses (60 and 80 Gy), whereas the irradiated sperm were preferentially utilized at the highest dose (100 Gy). Bagrada hilaris exhibited high variability in P2 indexes, indicating a sperm-mixing mechanism.

8.
Insects ; 14(7)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37504661

RESUMO

The brown marmorated stink bug (BMSB), Halyomorpha halys, is a phytophagous invasive pest native to south-eastern Asia, and it is now distributed worldwide. This species is considered to be one of the most damaging insect pests in North America and in Europe. In agriculture, the predominant approach to managing BMSB is based on the use of insecticides, specifically pyrethroids and neonicotinoids. Unfortunately, the biology of the species and its facility to develop mechanisms of resistance to available pesticides has induced farmers and scientists to develop different, least-toxic, and more effective strategies of control. In a territorial area-wide approach, the use of a classical biological control program in combination with other least-toxic strategies has been given prominent consideration. Following exploratory surveys in the native range, attention has focused on Trissolcus japonicus, a small scelionid egg parasitoid wasp that is able to oviposit and complete its larval development in a single egg of H. halys. A common method for detecting egg parasitoids in the native range involves the placement of so-called 'sentinel' egg masses of the pest in the environment for a short period, which are then returned to the laboratory to determine if any of them are parasitized. Outside of the area of origin, the use of fertile sentinel eggs of the alien species may lead to the further release of the pest species; an alternative is to use sterile sentinel eggs to record the presence of new indigenous egg parasitoids or to detect the dispersal of alien species (in this case, T. japonicus) released in a new environment to control the target insect pest species. This study evaluated the performance of three types of sterile sentinel eggs as a suitable substrate for the oviposition and larval development of the egg parasitoid T. japonicus in a context of combining classical biological control with a Sterile Insect Technique (SIT) approach.

9.
Insects ; 14(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37504667

RESUMO

Red palm weevil (RPW) Rhynchophorus ferrugineus (Olivier 1790) is a highly invasive species originating from Southeast Asia and Melanesia. Over the past 30 years, this alien pest has spread extensively in the Middle East and the Mediterranean basin. Its endophagous larvae feed on various palm species, causing significant damage that leads to the death of palm trees. Controlling RPW infestations is challenging due to their gregarious nature and the lack of detectable early symptoms. Systemic insecticides are effective means of control, but their use in urban areas is prohibited and resistance can develop. Considering alternative options with minimal environmental impact, the Sterile Insect Technique (SIT) has been explored. Previous research has shown that male RPWs irradiated at 80 Gy or higher achieve full sterility. This study aimed to investigate in laboratory conditions whether RPW sterile males (irradiated at 60 and 80 Gy) could compete sexually with non-irradiate males. Laboratory bio-assays under both no-choice and choice conditions assessed sexual performance in terms of number of matings, mating duration and time elapsed until the first mating. The results confirmed that irradiation does not negatively affect the mating performance of sterile males, demonstrating their ability to compete successfully with non-irradiated males in both experimental setups.

10.
Insects ; 14(4)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37103168

RESUMO

The painted bug, Bagrada hilaris, is an agricultural pest in its original areas (Africa, South Asia, and the Middle East), and it has recently been recorded as an invasive species in southwestern part of the US, Chile, Mexico, and two islands in the Mediterranean basin. Its polyphagous diet causes severe damage to economically important crops. The control of this pest is primarily achieved by means of synthetic pesticides, which are often expensive, ineffective, and harmful to the ecosystem. Recent physiological bioassays to assess its potential control through the sterile insect technique demonstrated that mating between untreated females and males irradiated at doses of 64 and 100 Gy, respectively, resulted in 90% and 100% sterility of the eggs produced by the females. In this study, the mating abilities of virgin males irradiated at 60 and 100 Gy with virgin females were measured through a study of short-range courtship mediated by vibrational communication. The results indicate that males irradiated at 100 Gy emit signals with lower peak frequencies, mate significantly less than unirradiated males do, and do not surpass the early stages of courtship. Conversely, males irradiated at 60 Gy present vibrational signal frequencies that are comparable to those of the control and successfully mated males. Our findings suggest that B. hilaris individuals irradiated at 60 Gy are good candidates for the control of this species, given that they retain sexual competitiveness regardless of their sterility, through an area-wide program that incorporates the sterile insect technique.

11.
Insects ; 13(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36135488

RESUMO

The bagrada bug, Bagrada hilaris, is an invasive insect pest in the family Brassicaceae that causes economically important damage to crops. It was originally present in Asia, the Middle East, and Africa, and was reported as invasive in the southwestern part of the US, in Chile, and on a few islands in the Mediterranean Basin. In its native range, B. hilaris is controlled by several egg parasitoid species that are under consideration as potential biological control agents. This research evaluated the impact of gamma irradiation on life history parameters, e.g., the fecundity, fertility, and longevity of B. hilaris, as a critical step towards assessing the feasibility of using the sterile insect technique against this recent invasive pest. Newly emerged adults of a laboratory colony originally collected from the island of Pantelleria (Italy) were gamma-irradiated. Life history parameters were evaluated at nine different doses, ranging from 16 Gy to 140 Gy. The minimal dose to approach full sterility was 100 Gy. Irradiation up to a maximum of 140 Gy apparently did not negatively impact the longevity of the adults. Even if both genders are sensitive to irradiation, the decline in fecundity for irradiated females could be exploited to release irradiated males safely to apply the SIT in combination with classical biological control. The data presented here allow us to consider, for the first time, the irradiation of bagrada adults as a suitable and feasible technique that could contribute to guaranteeing a safe approach to control this important pest species in agro-ecosystems. More research is warranted on the competitive fitness of irradiated males to better understand mating behavior as well as elucidate the possible mechanisms of sperm selection by polyandric B. hilaris females.

12.
Front Plant Sci ; 13: 830931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283922

RESUMO

Gene expression manipulation of specific metabolic pathways can be used to obtain bioaccumulation of valuable molecules and desired quality traits in plants. A single-gene approach to impact different traits would be greatly desirable in agrospace applications, where several aspects of plant physiology can be affected, influencing growth. In this work, MicroTom hairy root cultures expressing a MYB-like transcription factor that regulates the biosynthesis of anthocyanins in Petunia hybrida (PhAN4), were considered as a testbed for bio-fortified tomato whole plants aimed at agrospace applications. Ectopic expression of PhAN4 promoted biosynthesis of anthocyanins, allowing to profile 5 major derivatives of delphinidin and petunidin together with pelargonidin and malvidin-based anthocyanins, unusual in tomato. Consistent with PhAN4 features, transcriptomic profiling indicated upregulation of genes correlated to anthocyanin biosynthesis. Interestingly, a transcriptome reprogramming oriented to positive regulation of cell response to biotic, abiotic, and redox stimuli was evidenced. PhAN4 hairy root cultures showed the significant capability to counteract reactive oxygen species (ROS) accumulation and protein misfolding upon high-dose gamma irradiation, which is among the most potent pro-oxidant stress that can be encountered in space. These results may have significance in the engineering of whole tomato plants that can benefit space agriculture.

13.
Insects ; 10(11)2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31744107

RESUMO

The sterility of eggs and nymphs from gamma-irradiated male Halyomorpha halys was investigated to determine the potential for the sterile insect technique (SIT). Males irradiated at 0, 16, 24 and 32 Gy were placed with untreated virgin females, and egg sterility was determined, showing 54.3% at 16 Gy. The percentage of sterility from irradiation was 26 percent lower than previous results from the USA and the variance was very high. Competitive overflooding ratio trials between irradiated virgin males and fertile virgin males at a 5:1 ratio resulted in the expected egg sterility, indicating competitive performance by irradiated males. By July and August, older, irradiated overwintered males were significantly less competitive than similar, non-irradiated males. There is a need to revisit the irradiation delivery method to achieve proper precision around the paternal dose required for an expected >80% egg sterility and subsequent ~99% endpoint sterility estimated at adult emergence in the F1 phase. These results suggest that the mating competitiveness and competency of males after irradiation at 16 Gy is not limiting to the sterile insect technique for suppression. A wild harvest of overwintering males using the aggregation pheromone, followed by irradiation and male release, might replace rearing. Mass-collected, sterilized bugs could be transported from an area of high H. halys density and shipped for release to enable suppression or eradication elsewhere. This concept is under development but further work is needed now to understand the difference in results between the US and Italian irradiators and increase the reliability of dosimetry.

14.
Opt Lett ; 43(4): 903-906, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29444023

RESUMO

The results of irradiation tests on Ce-doped sol-gel silica using x- and γ-rays up to 10 kGy are reported in order to investigate the radiation hardness of this material for high-energy physics applications. Sol-gel silica fibers with Ce concentrations of 0.0125 and 0.05 mol. % are characterized by means of optical absorption and attenuation length measurements before and after irradiation. The two different techniques give comparable results, evidencing the formation of a main broad radiation-induced absorption band, peaking at about 2.2 eV, related to radiation-induced color centers. The results are compared with those obtained on bulk silica. This study reveals that an improvement of the radiation hardness of Ce-doped silica fibers can be achieved by reducing Ce content inside the fiber core, paving the way for further material development.

15.
Opt Express ; 26(26): 33841-33855, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30650816

RESUMO

PLAnetary Transits and Oscillations of stars (PLATO) is a medium sized mission (M3) selected by the European Space Agency (ESA) for launch in 2026. The PLATO payload includes 26 telescopes all based on a six-element refractive optical scheme. Some components will be eventually manufactured by S-FPL51, N-KZFS11 and S-FTM16 glass whose radiation resistance is partially or totally unknown. The radiation-resistance properties of such materials have been investigated by using a 60Co γ-rays source as probe. Each optical component has been characterized by a depth profile curve which describes the transmission loss as a function of the thickness in dependence of the impinging dose. A model to simulate the throughput of the whole instrument has been developed and used to verify the instrument performance considering different stellar spectra.

16.
Opt Lett ; 38(4): 516-8, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23455121

RESUMO

The influence of γ-ray irradiation on the optical properties of Bi(2)O(3)-B(2)O(3)-SiO(2) glass has been investigated. Broadband infrared (IR) emission at 1310 nm with a FWHM over 200 nm is observed in the γ-ray irradiated glass. The IR luminescence depends on the γ-ray irradiation dose and the concentration of Bi(2)O(3). The thermal stability of the γ-ray irradiated IR luminescence center is studied, and the origin of the IR luminescence center has been suggested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA