Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(21): e202401118, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38433100

RESUMO

Inorganic zeolites have excellent molecular sieving properties, but they are difficult to process into macroscopic structures. In this work, we use metal-organic framework (MOF) glass as substrates to engineer the interface with inorganic zeolites, and then assemble the discrete crystalline zeolite powders into monolithic structures. The zeolites are well dispersed and stabilized within the MOF glass matrix, and the monolith has satisfactory mechanical stabilities for membrane applications. We demonstrate the effective separation performance of the membrane for 1,3-butadiene (C4H6) from other C4 hydrocarbons, which is a crucial and challenging separation in the chemical industry. The membrane achieves a high permeance of C4H6 (693.00±21.83 GPU) and a high selectivity over n-butene, n-butane, isobutene, and isobutane (9.72, 9.94, 10.31, and 11.94, respectively). This strategy opens up new possibilities for developing advanced membrane materials for difficult hydrocarbon separations.

2.
Adv Mater ; 35(48): e2307013, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37643466

RESUMO

Ultrathin membranes with ultrahigh permeance and good gas selectivity have the potential to greatly decrease separation process costs, but it requires the practical preparation of large area membranes for implementation. Metal-organic frameworks (MOFs) are very attractive for membrane gas separation applications. However, to date, the largest MOF membrane area reported in the literature is only about 100 cm2 . In the present study, a new step-nucleation in situ self-repair strategy is proposed that enables the preparation of large-area (2400 cm2 ) ultrathin and rollable MOF membranes deposited on an inexpensive flexible polymer membrane support layer for the first time, combining a polyvinyl alcohol (PVA)-metal-ion layer and a pure metal-ion layer. The main role of the pure metal-ion layer is to act as the main nucleation sites for MOF membrane growth, while the PVA-metal-ion layer acts as a slow-release metal-ion source, which supplements MOF crystal nucleation to repair any defects occurring. Membrane modules are necessary components for membrane applications, and spiral-wound modules are among the most common module formats that are widely applied in gas separation. A 4800 cm2 spiral-wound membrane module was successfully prepared, demonstrating the practical implementation of large-area MOF membranes.

3.
Nanomaterials (Basel) ; 10(10)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066527

RESUMO

Particulate matter 2.5 (PM2.5) has become a public hazard to people's lives and health. Traditional melt-blown membranes cannot filter dangerous particles due to their limited diameter, and ultra-fine electrospinning fibers are vulnerable to external forces. Therefore, creating highly efficient air filters by using an innovative technique and structure has become necessary. In this study, a combination of polypropylene (PP) melt-blown and polyvinyl alcohol (PVA)/zeolite imidazole frameworks-8 (ZIF-8) electrospinning technique is employed to construct a PP/PVA/ZIF-8 membrane with a hierarchical fibrous structure. The synergistic effect of hierarchical fibrous structure and ZIF-8 effectively captures PM2.5. The PP/PVA composite membrane loaded with 2.5% loading ZIF-8 has an average filtration efficacy reaching as high as 96.5% for PM2.5 and quality factor (Qf) of 0.099 Pa-1. The resultant membrane resists 33.34 N tensile strength and has a low pressure drop, excellent filtration efficiency, and mechanical strength. This work presents a facile preparation method that is suitable for mass production and the application of membranes to be used as air filters for highly efficient filtration of PM2.5.

4.
ACS Appl Mater Interfaces ; 12(7): 8730-8739, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31971766

RESUMO

Environmental pollution, especially air pollution, seriously endangers public health globally. Due to severe air pollution, air filters still face many challenges, especially in terms of filtration performance and filtration stability. Herein, a zeolitic imidazolate framework-8/polypropylene-polycarbonate barklike meltblown fibrous membrane (PPC/ZIF-8) was designed through meltblown and an in situ growth method, achieving efficient PM2.5 capture and high filtration stability under a harsh environment. After in situ growth, the PPC/ZIF-8 membrane could dramatically enhance the PM2.5 filtration efficiency without increasing the pressure drop; the PM2.5 filtration efficiency and quality factor were up to 32.83 and 116.86% higher than those of the pure PPC membrane, respectively. Moreover, through five filtration-wash-dry cycles, the PM2.5 filtration performance is still at a high level. This PPC/ZIF-8 membrane provides a new strategy for the preparation of an air filter with excellent comprehensive filtration performance.

5.
Polymers (Basel) ; 11(8)2019 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-31382710

RESUMO

A bark-like imitated polypr opylene (PP)/polycarbonate (PC) nanofibrous membrane was constructed by one-step meltblown technique for efficient particulate matter (PM) removal. The effects of PC content (0%, 1%, 3%, 5%, and 7%) on membrane thermal stability, microscopic characteristics, filtration performance, hydrophilicity, and water vapor transmission were investigated. The results demonstrated that using facile design of incompatibility and viscosity difference between PC and PP polymers decreases average fiber diameter, creating a bark-like groove appearance and increasing surface potential, making a new PP/PC membrane with high filtration performance. The resultant PP/PC membrane had finer average fiber diameter of 0.63 µm, which was nearly 89.41% lower than PP membranes (5.95 µm), and its quality factor (0.036 Pa-1) was nearly 2.12 times than that of PP membranes (0.017 Pa-1) with the die hole diameter of 0.5 mm. This fabrication technique of a special meltblown filter membrane saves the cost of die retrofitting and post-processing, which provides an innovative method for particulate efficient removal of high efficient filters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA