Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 660: 124233, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38763309

RESUMO

A novel approach based on supervised machine-learning is proposed to predict the solubility of drugs and drug-like molecules in mixtures of organic solvents. Similar to quantitative structure-property relationship (QSPR) models, different solvent types are identified by molecular descriptors, which, in this study, are considered as UNIFAC subgroups. To overcome the potential lack of UNIFAC subgroups for the complex Active Pharmaceutical Ingredients (APIs) currently developed in the pharmaceutical industry, the API molecule is considered as a unique entity in the proposed modelling approach. Therefore, API solubility is predicted as a function of temperature, functional subgroups of the solvents and composition of the solvent mixture; in turn, regressors' correlation is handled through Partial Least-Squares (PLS) regression. The method is developed and tested with experimental data of a real API and 14 organic solvents that are industrially employed for crystallisation. Solubility predictions are accurate and precise for single solvents, binary mixtures and ternary mixtures of organic solvents at different compositions and temperatures, with a determination coefficient R2 ≥ 0.90. To further test the applicability of the model, the proposed approach is applied to 9 literature organic solubility datasets of drugs and drug-like compounds and compared to benchmark solubility models in the literature. Results show that the proposed approach provides satisfactory predictions: the majority of validation and calibration data have R2 = 0.95-0.99; the ratio between RMSE (root mean squared error) of the proposed method and the range of measured solubility values is from 1 to 3 orders of magnitude smaller than the RMSE ratio obtained by the benchmark models.


Assuntos
Aprendizado de Máquina , Solubilidade , Solventes , Solventes/química , Preparações Farmacêuticas/química , Análise dos Mínimos Quadrados , Relação Quantitativa Estrutura-Atividade , Compostos Orgânicos/química , Ensaios de Triagem em Larga Escala/métodos , Temperatura
2.
Int J Pharm ; 614: 121435, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34974150

RESUMO

In oral solid dosage production through direct compression powder lubrication must be carefully selected to facilitate the manufacturing of tablets without degrading product manufacturability and quality (e.g. dissolution). To do so, several semi-empirical models relating compression performance to process operating conditions have been developed. Among them, we consider an extension of the Kushner and Moore model (Kushner and Moore, 2010, International Journal Pharmaceutics, 399:19) that is useful for the purpose, but requires an extensive experimental campaign for parameters identification. This implies the preparation and compression of multiple powder blends, each one with a different lubrication extent. In turn, this translates into a considerable consumption of Active Pharmaceutical Ingredient (API), and into time-consuming experiments. We tackled this issue by proposing a novel model-based design of experiments (MBDoE) approach, which minimizes the number of optimal blends for model calibration, while obtaining statistically sound parameters estimates and model predictions. Both sequential and parallel MBDoE configurations were compared. Experimental results involving two placebo blends with different lubrication sensitivity showed that this methodology is able to reduce the experimental effort by 60-70% with respect to the standard industrial practice independently of the formulation considered and configuration (i.e. parallel vs. sequential) adopted.


Assuntos
Lubrificação , Composição de Medicamentos , Pós , Pressão , Comprimidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA