Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 208(12): 1293-1304, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774011

RESUMO

Rationale: The effects of high-dose inhaled nitric oxide on hypoxemia in coronavirus disease (COVID-19) acute respiratory failure are unknown. Objectives: The primary outcome was the change in arterial oxygenation (PaO2/FiO2) at 48 hours. The secondary outcomes included: time to reach a PaO2/FiO2.300mmHg for at least 24 hours, the proportion of participants with a PaO2/FiO2.300mmHg at 28 days, and survival at 28 and at 90 days. Methods: Mechanically ventilated adults with COVID-19 pneumonia were enrolled in a phase II, multicenter, single-blind, randomized controlled parallel-arm trial. Participants in the intervention arm received inhaled nitric oxide at 80 ppm for 48 hours, compared with the control group receiving usual care (without placebo). Measurements and Main Results: A total of 193 participants were included in the modified intention-to-treat analysis. The mean change in PaO2/FiO2 ratio at 48 hours was 28.3mmHg in the intervention group and 21.4mmHg in the control group (mean difference, 39.1mmHg; 95% credible interval [CrI], 18.1 to 60.3). The mean time to reach a PaO2/FiO2.300mmHg in the interventional group was 8.7 days, compared with 8.4 days for the control group (mean difference, 0.44; 95% CrI, 23.63 to 4.53). At 28 days, the proportion of participants attaining a PaO2/FiO2.300mmHg was 27.7% in the inhaled nitric oxide group and 17.2% in the control subjects (risk ratio, 2.03; 95% CrI, 1.11 to 3.86). Duration of ventilation and mortality at 28 and 90 days did not differ. No serious adverse events were reported. Conclusions: The use of high-dose inhaled nitric oxide resulted in an improvement of PaO2/FiO2 at 48 hours compared with usual care in adults with acute hypoxemic respiratory failure due to COVID-19.


Assuntos
COVID-19 , Insuficiência Respiratória , Adulto , Humanos , Óxido Nítrico/uso terapêutico , COVID-19/complicações , Método Simples-Cego , Insuficiência Respiratória/tratamento farmacológico , Insuficiência Respiratória/etiologia , Respiração Artificial , Administração por Inalação
3.
Crit Care ; 25(1): 154, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888134

RESUMO

BACKGROUND: Acute respiratory distress syndrome remains a heterogeneous syndrome for clinicians and researchers difficulting successful tailoring of interventions and trials. To this moment, phenotyping of this syndrome has been approached by means of inflammatory laboratory panels. Nevertheless, the systemic and inflammatory expression of acute respiratory distress syndrome might not reflect its respiratory mechanics and gas exchange. METHODS: Retrospective analysis of a prospective cohort of two hundred thirty-eight patients consecutively admitted patients under mechanical ventilation presenting with acute respiratory distress syndrome. All patients received standardized monitoring of clinical variables, respiratory mechanics and computed tomography scans at predefined PEEP levels. Employing latent class analysis, an unsupervised structural equation modelling method, on respiratory mechanics, gas-exchange and computed tomography-derived gas- and tissue-volumes at a PEEP level of 5cmH2O, distinct pulmonary phenotypes of acute respiratory distress syndrome were identified. RESULTS: Latent class analysis was applied to 54 respiratory mechanics, gas-exchange and CT-derived gas- and tissue-volume variables, and a two-class model identified as best fitting. Phenotype 1 (non-recruitable) presented lower respiratory system elastance, alveolar dead space and amount of potentially recruitable lung volume than phenotype 2 (recruitable). Phenotype 2 (recruitable) responded with an increase in ventilated lung tissue, compliance and PaO2/FiO2 ratio (p < 0.001), in addition to a decrease in alveolar dead space (p < 0.001), to a standardized recruitment manoeuvre. Patients belonging to phenotype 2 (recruitable) presented a higher intensive care mortality (hazard ratio 2.9, 95% confidence interval 1.7-2.7, p = 0.001). CONCLUSIONS: The present study identifies two ARDS phenotypes based on respiratory mechanics, gas-exchange and computed tomography-derived gas- and tissue-volumes. These phenotypes are characterized by distinctly diverse responses to a standardized recruitment manoeuvre and by a diverging mortality. Given multicentre validation, the simple and rapid identification of these pulmonary phenotypes could facilitate enrichment of future prospective clinical trials addressing mechanical ventilation strategies in ARDS.


Assuntos
Fenótipo , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/terapia , Idoso , Área Sob a Curva , Estudos de Coortes , Feminino , Humanos , Análise de Classes Latentes , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Curva ROC , Síndrome do Desconforto Respiratório/mortalidade , Estudos Retrospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA