Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(3): 101467, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38471503

RESUMO

Nipah virus (NiV) has been recently ranked by the World Health Organization as being among the top eight emerging pathogens likely to cause major epidemics, whereas no therapeutics or vaccines have yet been approved. We report a method to deliver immunogenic epitopes from NiV through the targeting of the CD40 receptor of antigen-presenting cells by fusing a selected humanized anti-CD40 monoclonal antibody to the Nipah glycoprotein with conserved NiV fusion and nucleocapsid peptides. In the African green monkey model, CD40.NiV induces specific immunoglobulin A (IgA) and IgG as well as cross-neutralizing responses against circulating NiV strains and Hendra virus and T cell responses. Challenge experiments using a NiV-B strain demonstrate the high protective efficacy of the vaccine, with all vaccinated animals surviving and showing no significant clinical signs or virus replication, suggesting that the CD40.NiV vaccine conferred sterilizing immunity. Overall, results obtained with the CD40.NiV vaccine are highly promising in terms of the breadth and efficacy against NiV.


Assuntos
Vacinas Virais , Animais , Chlorocebus aethiops , Linfócitos T , Formação de Anticorpos , Células Apresentadoras de Antígenos , Replicação Viral
2.
Front Immunol ; 13: 949779, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016929

RESUMO

The development of safe, long-term, effective vaccines is still a challenge for many infectious diseases. Thus, the search of new vaccine strategies and production platforms that allow rapidly and effectively responding against emerging or reemerging pathogens has become a priority in the last years. Targeting the antigens directly to dendritic cells (DCs) has emerged as a new approach to enhance the immune response after vaccination. This strategy is based on the fusion of the antigens of choice to monoclonal antibodies directed against specific DC surface receptors such as CD40. Since time is essential, in silico approaches are of high interest to select the most immunogenic and conserved epitopes to improve the T- and B-cells responses. The purpose of this review is to present the advances in DC vaccination, with special focus on DC targeting vaccines and epitope mapping strategies and provide a new framework for improving vaccine responses against infectious diseases.


Assuntos
Doenças Transmissíveis Emergentes , Vacinas , Antígenos , Antígenos CD40 , Doenças Transmissíveis Emergentes/prevenção & controle , Células Dendríticas , Humanos , Vacinação
3.
Elife ; 112022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35801637

RESUMO

The definition of correlates of protection is critical for the development of next-generation SARS-CoV-2 vaccine platforms. Here, we propose a model-based approach for identifying mechanistic correlates of protection based on mathematical modelling of viral dynamics and data mining of immunological markers. The application to three different studies in non-human primates evaluating SARS-CoV-2 vaccines based on CD40-targeting, two-component spike nanoparticle and mRNA 1273 identifies and quantifies two main mechanisms that are a decrease of rate of cell infection and an increase in clearance of infected cells. Inhibition of RBD binding to ACE2 appears to be a robust mechanistic correlate of protection across the three vaccine platforms although not capturing the whole biological vaccine effect. The model shows that RBD/ACE2 binding inhibition represents a strong mechanism of protection which required significant reduction in blocking potency to effectively compromise the control of viral replication.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Primatas/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
EBioMedicine ; 80: 104062, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35594660

RESUMO

BACKGROUND: There is an urgent need of a new generation of vaccine that are able to enhance protection against SARS-CoV-2 and related variants of concern (VOC) and emerging coronaviruses. METHODS: We identified conserved T- and B-cell epitopes from Spike (S) and Nucleocapsid (N) highly homologous to 38 sarbecoviruses, including SARS-CoV-2 VOCs, to design a protein subunit vaccine targeting antigens to Dendritic Cells (DC) via CD40 surface receptor (CD40.CoV2). FINDINGS: CD40.CoV2 immunization elicited high levels of cross-neutralizing antibodies against SARS-CoV-2, VOCs, and SARS-CoV-1 in K18-hACE2 transgenic mice, associated with viral control and survival after SARS-CoV-2 challenge. A direct comparison of CD40.CoV2 with the mRNA BNT162b2 vaccine showed that the two vaccines were equally immunogenic in mice. We demonstrated the potency of CD40.CoV2 to recall in vitro human multi-epitope, functional, and cytotoxic SARS-CoV-2 S- and N-specific T-cell responses that are unaffected by VOC mutations and cross-reactive with SARS-CoV-1 and, to a lesser extent, MERS epitopes. INTERPRETATION: We report the immunogenicity and antiviral efficacy of the CD40.CoV2 vaccine in a preclinical model providing a framework for a pan-sarbecovirus vaccine. FUNDINGS: This work was supported by INSERM and the Investissements d'Avenir program, Vaccine Research Institute (VRI), managed by the ANR and the CARE project funded from the Innovative Medicines Initiative 2 Joint Undertaking (JU).


Assuntos
COVID-19 , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
5.
Nat Commun ; 12(1): 5215, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471122

RESUMO

Achieving sufficient worldwide vaccination coverage against SARS-CoV-2 will require additional approaches to currently approved viral vector and mRNA vaccines. Subunit vaccines may have distinct advantages when immunizing vulnerable individuals, children and pregnant women. Here, we present a new generation of subunit vaccines targeting viral antigens to CD40-expressing antigen-presenting cells. We demonstrate that targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to CD40 (αCD40.RBD) induces significant levels of specific T and B cells, with long-term memory phenotypes, in a humanized mouse model. Additionally, we demonstrate that a single dose of the αCD40.RBD vaccine, injected without adjuvant, is sufficient to boost a rapid increase in neutralizing antibodies in convalescent non-human primates (NHPs) exposed six months previously to SARS-CoV-2. Vaccine-elicited antibodies cross-neutralize different SARS-CoV-2 variants, including D614G, B1.1.7 and to a lesser extent B1.351. Such vaccination significantly improves protection against a new high-dose virulent challenge versus that in non-vaccinated convalescent animals.


Assuntos
Antígenos CD40/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos B/imunologia , Convalescença , Humanos , Macaca , Camundongos , Mutação , Domínios Proteicos , Reinfecção/prevenção & controle , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Linfócitos T/imunologia , Vacinação , Vacinas de Subunidades Antigênicas/imunologia
6.
Sci Signal ; 14(697)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429383

RESUMO

Modified vaccinia Ankara (MVA) is a live, attenuated human smallpox vaccine and a vector for the development of new vaccines against infectious diseases and cancer. Efficient activation of the immune system by MVA partially relies on its encounter with dendritic cells (DCs). MVA infection of DCs leads to multiple outcomes, including cytokine production, activation of costimulatory molecules for T cell stimulation, and cell death. Here, we examined how these diverse responses are orchestrated in human DCs. Single-cell analyses revealed that the response to MVA infection in DCs was limited to early viral gene expression. In response to the early events in the viral cycle, we found that DCs grouped into three distinct clusters. A cluster of infected cells sensed the MVA genome by the intracellular innate immunity pathway mediated by cGAS, STING, TBK1, and IRF3 and subsequently produced inflammatory cytokines. In response to these cytokines, a cluster of noninfected bystander cells increased costimulatory molecule expression. A separate cluster of infected cells underwent caspase-dependent apoptosis. Induction of apoptosis persisted after inhibition of innate immunity pathway mediators independently of previously described IRF-dependent or replication-dependent pathways and was a response to early MVA gene expression. Together, our study identified multiple mechanisms that underlie the interactions of MVA with human DCs.


Assuntos
Vacínia , Vacinas Virais , Células Dendríticas , Humanos , Análise de Célula Única , Vacinas de DNA
7.
PLoS Pathog ; 16(11): e1009025, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253297

RESUMO

The development of HIV-1 vaccines is challenged by the lack of relevant models to accurately induce human B- and T-cell responses in lymphoid organs. In humanized mice reconstituted with human hematopoietic stem cells (hu-mice), human B cell-development and function are impaired and cells fail to efficiently transition from IgM B cells to IgG B cells. Here, we found that CD40-targeted vaccination combined with CpG-B adjuvant overcomes the usual defect of human B-cell switch and maturation in hu-mice. We further dissected hu-B cell responses directed against the HIV-1 Env protein elicited by targeting Env gp140 clade C to the CD40 receptor of antigen-presenting cells. The anti-CD40.Env gp140 vaccine was injected with CpG-B in a homologous prime/boost regimen or as a boost of a NYVAC-KC pox vector encoding Env gp140 clade C. Both regimens elicited Env-specific IgG-switched memory hu-B cells at a greater magnitude in hu-mice primed with NYVAC-KC. Single-cell RNA-seq analysis showed gp140-specific hu-B cells to express polyclonal IgG1 and IgG3 isotypes and a broad Ig VH/VL repertoire, with predominant VH3 family gene usage. These cells exhibited a higher rate of somatic hypermutation than the non-specific IgG+ hu-B-cell counterpart. Both vaccine regimens induced splenic GC-like structures containing hu-B and hu-Tfh-like cells expressing PD-1 and BCL-6. We confirmed in this model that circulating ICOS+ memory hu-Tfh cells correlated with the magnitude of gp140-specific B-cell responses. Finally, the NYVAC-KC heterologous prime led to a more diverse clonal expansion of specific hu-B cells. Thus, this study shows that CD40-targeted vaccination induces human IgG production in hu-mice and provides insights for the development of a CD40-targeting vaccine to prevent HIV-1 infection in humans.


Assuntos
Vacinas contra a AIDS/imunologia , Antígenos CD40/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Receptor Toll-Like 9/agonistas , Animais , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Células-Tronco Hematopoéticas , Humanos , Imunoglobulina G/imunologia , Camundongos , Linfócitos T/imunologia , Vacinação , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
8.
Eur J Immunol ; 49(6): 954-965, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30888052

RESUMO

Human immune system (HIS) mouse models provide a robust in vivo platform to study human immunity. Nevertheless, the signals that guide human lymphocyte differentiation in HIS mice remain poorly understood. Here, we have developed a novel Balb/c Rag2-/- Il2rg-/- SirpaNOD (BRGS) HIS mouse model expressing human HLA-A2 and -DR2 transgenes (BRGSA2DR2). When comparing BRGS and BRGSA2DR2 HIS mice engrafted with human CD34+ stem cells, a more rapid emergence of T cells in the circulation of hosts bearing human HLA was shown, which may reflect a more efficient human T-cell development in the mouse thymus. Development of CD4+ and CD8+ T cells was accelerated in BRGSA2DR2 HIS mice and generated more balanced B and T-cell compartments in peripheral lymphoid organs. Both B- and T-cell function appeared enhanced in the presence of human HLA transgenes with higher levels of class switched Ig, increased percentages of polyfunctional T cells and clear evidence for antigen-specific T-cell responses following immunization. Taken together, the presence of human HLA class I and II molecules can improve multiple aspects of human B- and T-cell homeostasis and function in the BRGS-based HIS mouse model.


Assuntos
Modelos Animais de Doenças , Linfopoese/imunologia , Camundongos Transgênicos , Linfócitos T , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Antígeno HLA-DR2/genética , Antígeno HLA-DR2/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T/citologia , Linfócitos T/imunologia
9.
Cell Rep ; 21(13): 3681-3690, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29281818

RESUMO

The events required for the induction of broad neutralizing antibodies (bnAbs) following HIV-1 envelope (Env) vaccination are unknown, and their induction in animal models as proof of concept would be critical. Here, we describe the induction of plasma antibodies capable of neutralizing heterologous primary (tier 2) HIV-1 strains in one macaque and two rabbits. Env immunogens were designed to induce CD4 binding site (CD4bs) bnAbs, but surprisingly, the macaque developed V1V2-glycan bnAbs. Env immunization of CD4bs bnAb heavy chain rearrangement (VHDJH) knockin mice similarly induced V1V2-glycan neutralizing antibodies (nAbs), wherein the human CD4bs VH chains were replaced with mouse rearrangements bearing diversity region (D)-D fusions, creating antibodies with long, tyrosine-rich HCDR3s. Our results show that Env vaccination can elicit broad neutralization of tier 2 HIV-1, demonstrate that V1V2-glycan bnAbs are more readily induced than CD4bs bnAbs, and define VH replacement and diversity region fusion as potential mechanisms for generating V1V2-glycan bnAb site antibodies.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Epitopos/química , Epitopos/imunologia , Imunização , Macaca mulatta , Camundongos , Polissacarídeos/imunologia , Multimerização Proteica , Coelhos , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
10.
Exp Dermatol ; 26(10): 963-966, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28267869

RESUMO

Development of new immunotherapeutic strategies relies on the ability to activate the right cells at the right place and at the right moment and on the capacity of these cells to home to the right organ(s). Skin delivery has shown high potency for immunotherapeutic administration. However, an adequate in vivo model of human skin immunity is still a critical bottleneck. We demonstrated here that the skin of human immune system mice is colonized by human hematopoietic cells, mainly human T cells and that complementation with human antigen-presenting cells at the vaccination site allowed the induction of an immune response.


Assuntos
Antígeno HLA-A2/genética , Células-Tronco Hematopoéticas/metabolismo , Modelos Animais , Pele/citologia , Pele/imunologia , Animais , Antígenos CD34/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Antígeno HLA-A2/metabolismo , Transplante de Células-Tronco Hematopoéticas , Humanos , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Camundongos Transgênicos , Transplante Heterólogo
11.
BMC Immunol ; 16: 18, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25879661

RESUMO

Vaccination has been a major advance for health care, allowing eradication or reduction of incidence and mortality of various infectious diseases. However, there are major pathogens, such as Human Immunodeficiency Virus (HIV) or the causative agent of malaria, for which classical vaccination approaches have failed, therefore requiring new vaccination strategies. The development of new vaccine strategies relies on the ability to identify the challenges posed by these pathogens. Understanding the pathogenesis and correlates of protection for these diseases, our ability to accurately direct immune responses and to vaccinate specific populations are such examples of these roadblocks. In this respect, the use of a robust, cost-effective and predictive animal model that recapitulates features of both human infection and vaccination is currently a much-needed tool. We discuss here the major limitations faced by modern vaccinology and notably, the development of humanized mice for assessing the immune system, along with their potential as vaccine models.


Assuntos
Imunidade , Vacinas , Animais , Análise Custo-Benefício , Modelos Animais de Doenças , Humanos , Vacinação/economia , Vacinação/tendências
12.
Mol Ther Nucleic Acids ; 2: e120, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-24002730

RESUMO

Highly active antiretroviral therapy (HAART) has significantly improved the quality of life and the life expectancy of HIV-infected individuals. Still, drug-induced side effects and emergence of drug-resistant viral variants remain important issues that justify the exploration of alternative therapeutic options. One strategy consists of a gene therapy based on RNA interference to induce the sequence-specific degradation of the HIV-1 RNA genome. We have selected four potent short hairpin RNA (shRNA) candidates targeting the viral capside, integrase, protease and tat/rev open-reading frames and screened the safety of them during human hematopoietic cell development, both in vitro and in vivo. Although the four shRNA candidates appeared to be safe in vitro, one shRNA candidate impaired the in vivo development of the human immune system in Balb/c Rag2(-/-)IL-2Rγc(-/-) (BRG) mice. The three remaining shRNA candidates were combined into one single lentiviral vector (LV), and safety of the shRNA combination during human hematopoietic cell development was confirmed. Overall, we demonstrate here the preclinical in vivo safety of a LV expressing three shRNAs against HIV-1, which is proposed for a future Phase I clinical trial.Molecular Therapy-Nucleic Acids (2013) 2, e120; doi:10.1038/mtna.2013.48; published online 3 September 2013.

13.
J Virol Methods ; 187(1): 94-102, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23059551

RESUMO

The increasing diversity of HIV-1 isolates makes virus quantitation challenging, especially when diverse isolates co-circulate in a geographical area. Measuring the HIV-1 DNA levels in cells has become a valuable practical tool for fundamental and clinical research. A quantitative HIV-1 DNA assay was developed based on TaqMan(®) technology. Primers that target the highly conserved LTR region were designed to detect a broad array of HIV-1 variants, including viral isolates from many subtypes, with high sensitivity. Introduction of a pre-amplification step prior to the TaqMan(®) reaction allowed the specific amplification of fully reverse transcribed viral DNA. Execution of the pre-amplification step with a second primer set enables for the exclusive quantitation of the 2-LTR circular HIV-1 DNA form.


Assuntos
DNA Viral/análise , HIV-1/genética , HIV-1/isolamento & purificação , Reação em Cadeia da Polimerase , Linhagem Celular , Primers do DNA , DNA Viral/genética , Variação Genética , Repetição Terminal Longa de HIV , HIV-1/classificação , Humanos , Hibridização in Situ Fluorescente , RNA Viral , Sensibilidade e Especificidade , Linfócitos T/virologia , Taq Polimerase
14.
J Gen Virol ; 93(Pt 9): 2017-2027, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22647372

RESUMO

A novel genetic approach for the control of virus replication was used for the design of a conditionally replicating human immunodeficiency virus (HIV) variant, HIV-rtTA. HIV-rtTA gene expression and virus replication are strictly dependent on the presence of a non-toxic effector molecule, doxycycline (dox), and thus can be turned on and off at will in a graded and reversible manner. The in vivo replication capacity, pathogenicity and genetic stability of this HIV-rtTA variant were evaluated in a humanized mouse model of haematopoiesis that harbours lymphoid and myeloid components of the human immune system (HIS). Infection of dox-fed BALB Rag/γc HIS (BRG-HIS) mice with HIV-rtTA led to the establishment of a productive infection without CD4(+) T-cell depletion. The virus did not show any sign of escape from dox control for up to 10 weeks after the onset of infection. No reversion towards a functional Tat-transactivating responsive (TAR) RNA element axis was observed, confirming the genetic stability of the HIV-rtTA variant in vivo. These results demonstrate the proof of concept that HIV-rtTA replicates efficiently in vivo. HIV-rtTA is a promising tool for fundamental research to study virus-host interactions in vivo in a controlled fashion.


Assuntos
Linfócitos T CD4-Positivos/virologia , Doxiciclina/metabolismo , Regulação Viral da Expressão Gênica , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/fisiologia , Replicação Viral , Animais , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , HIV-1/genética , Humanos , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
15.
J Control Release ; 158(1): 139-47, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21982901

RESUMO

Efficient delivery of drugs to specific cellular reservoirs is of particular importance for therapeutics that are not able to pass cellular barriers and that may have unwanted side effects in off-target tissues. Heparin-binding epidermal growth factor (HB-EGF) is expressed on leukocytes and may be targeted for specific drug delivery using cross-reacting material (CRM)197, a non-toxic variant of diphtheria toxin and exogenous substrate for HB-EGF. We used fluorescently labeled CRM197 and CRM197-coated liposomes to investigate their potential use for drug delivery to leukocytes. We demonstrate that CRM197-guided systems are efficiently taken up by human leukocytes in vitro. CRM197 was also found to specifically target leukocytes in vivo in mice with components of the human immune system (HIS mice) and hamsters. Monocytes represent the most prominent subset of leukocytes that showed highly specific CRM197-mediated uptake. We therefore propose the application of CRM197 as a novel targeting approach in diseases that require the selective treatment of monocytes.


Assuntos
Proteínas de Bactérias/administração & dosagem , Sistemas de Liberação de Medicamentos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Monócitos/metabolismo , Animais , Linhagem Celular , Cricetinae , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Humanos , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Lipossomos , Camundongos , Camundongos Knockout
16.
World J Virol ; 1(3): 79-90, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24175213

RESUMO

In the last decade, RNA interference (RNAi) advanced to one of the most widely applied techniques in the biomedical research field and several RNAi therapeutic clinical trials have been launched. We focus on RNAi-based inhibitors against the chronic infection with human immunodeficiency virus type 1 (HIV-1). A lentiviral gene therapy is proposed for HIV-infected patients that will protect and reconstitute the vital immune cell pool. The RNAi-based inhibitors that have been developed are short hairpin RNA molecules (shRNAs), of which multiple are needed to prevent viral escape. In ten distinct steps, we describe the selection process that started with 135 shRNA candidates, from the initial design criteria, via testing of the in vitro and in vivo antiviral activity and cytotoxicity to the final design of a combinatorial therapy with three shRNAs. These shRNAs satisfied all 10 selection criteria such as targeting conserved regions of the HIV-1 RNA genome, exhibiting robust inhibition of HIV-1 replication and having no impact on cell physiology. This combinatorial shRNA vector will soon move forward to the first clinical studies.

17.
J Leukoc Biol ; 89(5): 785-95, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21310820

RESUMO

The dynamics of immune cell populations during acute HIV-1 infection are not fully deciphered, especially for non-T cells. In this study, we tested whether specific cellular subsets of the innate arm of the immune response are affected early after HIV-1 infection. Using a cohort of HIV-1-infected individuals, we have monitored the relative frequency of blood T lymphocytes, monocytes, and DCs at various infection stages and measured their respective intracellular HIV-1 DNA loads. The HIV-1 DNA load in naive CD4(+) T lymphocytes, which are lost very early during acute infection, was ten- to 100-fold lower than in CD57(-) and CD57(+) memory CD4(+) T lymphocytes. We observed that despite rapid, persistent loss after HIV-1 infection, pDCs represented a non-negligible HIV-1 DNA reservoir. CD16(+) proinflammatory cDCs and monocytes accumulated gradually, and HIV-infected CD16(+) monocytes contained higher HIV-1 DNA loads than their CD16(-) counterpart during acute infection. During chronic infection, CD16(+) cDCs exhibited higher HIV-1 DNA loads than the CD16(-) population. Overall, our results demonstrate that non-T cell compartments are a major HIV-1 DNA reservoir, and CD16(+) monocytes and CD16(+) cDCs potentially play an important role in HIV-1 dissemination.


Assuntos
Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/patogenicidade , Monócitos/virologia , Células Mieloides/virologia , Subpopulações de Linfócitos T/virologia , Doença Aguda , Adolescente , Adulto , Doença Crônica , DNA Viral/genética , Células Dendríticas/imunologia , Células Dendríticas/virologia , Progressão da Doença , Feminino , Citometria de Fluxo , Infecções por HIV/patologia , Humanos , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Células Mieloides/imunologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Subpopulações de Linfócitos T/imunologia , Adulto Jovem
18.
Methods Mol Biol ; 595: 87-115, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19941107

RESUMO

Over the last two decades, several humanized mouse models have been used to experimentally analyze the function and development of the human immune system. Recent advances have lead to the establishment of new murine-human chimeric models with improved characteristics, both in terms of human engraftment efficiency and in situ multilineage human hematopoietic development. We describe here the use of newborn BALB/c Rag2(-/-)gamma(c) (-/-) mice as recipients of human hematopoietic progenitor cells to produce "human immune system" (HIS) (BALB-Rag/gamma) mice, using human fetal liver progenitors. The two major subsets of the human dendritic cell lineage, namely, BDCA2(+)CD11c(-) plasmacytoid dendritic cells and BDCA2(-)CD11c(+) conventional dendritic cells, can be found in HIS (BALB-Rag/gamma) mice. In order to manipulate the expression of genes of interest, the human hematopoietic progenitor cells can be genetically engineered ex vivo by lentiviral transduction before performing xenograft transplantation. Using this mouse model, the human immune system can be assessed for both fundamental and pre-clinical purposes.


Assuntos
Proteínas de Ligação a DNA/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Transdução Genética/métodos , ADP-Ribosil Ciclase 1/metabolismo , Animais , Animais Recém-Nascidos , Antígenos CD34/metabolismo , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/imunologia , Citometria de Fluxo , Humanos , Lentivirus/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
19.
Hum Gene Ther ; 20(5): 524-30, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19203210

RESUMO

Doxycycline (DOX) is widely used as a pharmacological agent and as an effector molecule in inducible gene expression systems. For most applications, it is important to determine whether the DOX concentration reaches the level required for optimal efficacy. We developed a sensitive bioassay for measuring the DOX concentration in biological samples. We used a modified HeLa cell line with the luciferase reporter gene under the control of the DOX-inducible Tet-On system for regulation of gene expression. These HeLaDOX cells constitutively express a novel variant of the rtTA transcriptional activator protein that is highly DOX-sensitive. Incubation of the cells with a DOX-containing biological sample triggers luciferase expression, which can be quantitated by standard methods. This bioassay is sensitive, with a DOX detection limit of 22 ng/ml in plasma. The assay was used to determine the DOX concentration in plasma derived from DOX-treated rhesus macaques and mice. Furthermore, we found that the DOX concentration in murine cerebrospinal fluid is 31-fold lower than the concurrent plasma DOX level. This bioassay for the quantification of DOX concentration in biological samples has several advantages over high-performance liquid chromatography-based and microbiological assays: (1) multiple samples can be assayed in a single experiment; (2) only small sample volumes are required; (3) the assay has a low detection limit; and (4) the assay can be performed in any cell culture laboratory.


Assuntos
Doxiciclina/análise , Expressão Gênica/efeitos dos fármacos , Animais , Bioensaio , Proteínas de Ligação a DNA/genética , Doxiciclina/sangue , Doxiciclina/líquido cefalorraquidiano , Doxiciclina/farmacologia , Genes Reporter , Células HeLa , Humanos , Limite de Detecção , Luciferases/genética , Macaca mulatta , Camundongos , Camundongos Mutantes
20.
J Virol ; 82(18): 9171-8, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18596090

RESUMO

Transcription of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) is activated through binding of the viral Tat protein to the trans-activating response (TAR) element at the 5' end of the nascent transcript. Whereas HIV type 1 (HIV-1) TAR folds a simple hairpin structure, the corresponding domains of HIV-2 and SIVmac exhibit a more complex structure composed of three stem-loops. This structural polymorphism may be attributed to additional functions of TAR in HIV-2/SIVmac replication. We recently constructed an SIVmac variant that does not require the Tat-TAR interaction for transcription. We used this variant to study additional roles of TAR in SIVmac replication and generated mutants with a truncated TAR structure. We demonstrate that partial or nearly complete removal of TAR does not impair viral transcription, RNA processing, and translation. Moreover, these deletions do not significantly affect virus replication in the PM1 T-cell line and macaque peripheral blood mononuclear cells. These results demonstrate that the complex TAR structure in SIVmac has no other essential function in virus replication in vitro besides its role in Tat-mediated activation of transcription.


Assuntos
Regulação Viral da Expressão Gênica , Produtos do Gene tat/metabolismo , RNA Viral/química , Vírus da Imunodeficiência Símia/metabolismo , Sequências Repetidas Terminais/genética , Sequências Repetidas Terminais/fisiologia , Replicação Viral/genética , Animais , Sequência de Bases , Linhagem Celular , Produtos do Gene tat/genética , Repetição Terminal Longa de HIV/genética , Repetição Terminal Longa de HIV/fisiologia , Humanos , Macaca fascicularis , Dados de Sequência Molecular , Mutação , RNA Viral/genética , RNA Viral/metabolismo , Deleção de Sequência , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/fisiologia , Relação Estrutura-Atividade , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA