Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trends Genet ; 36(12): 936-950, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32873422

RESUMO

Small molecule-based targeting of chromatin regulatory factors has emerged as a promising therapeutic strategy in recent years. The development and ongoing clinical evaluation of novel agents targeting a range of chromatin regulatory processes, including DNA or histone modifiers, histone readers, and chromatin regulatory protein complexes, has inspired the field to identify and act upon the full compendium of therapeutic opportunities. Emerging studies highlight the frequent involvement of altered mammalian Switch/Sucrose-Nonfermentable (mSWI/SNF) chromatin-remodeling complexes (also called BAF complexes) in both human cancer and neurological disorders, suggesting new mechanisms and accompanying routes toward therapeutic intervention. Here, we review current approaches for direct targeting of mSWI/SNF complex structure and function and discuss settings in which aberrant mSWI/SNF biology is implicated in oncology and other diseases.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Neoplasias/terapia , Fatores de Transcrição/metabolismo , Animais , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Humanos , Neoplasias/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
3.
Elife ; 52016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26731516

RESUMO

Pharmacological inhibition of chromatin co-regulatory factors represents a clinically validated strategy to modulate oncogenic signaling through selective attenuation of gene expression. Here, we demonstrate that CBP/EP300 bromodomain inhibition preferentially abrogates the viability of multiple myeloma cell lines. Selective targeting of multiple myeloma cell lines through CBP/EP300 bromodomain inhibition is the result of direct transcriptional suppression of the lymphocyte-specific transcription factor IRF4, which is essential for the viability of myeloma cells, and the concomitant repression of the IRF4 target gene c-MYC. Ectopic expression of either IRF4 or MYC antagonizes the phenotypic and transcriptional effects of CBP/EP300 bromodomain inhibition, highlighting the IRF4/MYC axis as a key component of its mechanism of action. These findings suggest that CBP/EP300 bromodomain inhibition represents a viable therapeutic strategy for targeting multiple myeloma and other lymphoid malignancies dependent on the IRF4 network.


Assuntos
Antineoplásicos/farmacologia , Proteína p300 Associada a E1A/antagonistas & inibidores , Fatores Reguladores de Interferon/metabolismo , Mieloma Múltiplo/fisiopatologia , Fragmentos de Peptídeos/antagonistas & inibidores , Sialoglicoproteínas/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos
4.
Cancer Res ; 76(6): 1313-9, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26759243

RESUMO

Small-molecule inhibitors of the bromodomain and extraterminal (BET) family of proteins are being tested in clinical trials for a variety of cancers, but patient selection strategies remain limited. This challenge is partly attributed to the heterogeneous responses elicited by BET inhibition (BETi), including cellular differentiation, senescence, and death. In this study, we performed phenotypic and gene-expression analyses of treatment-naive and engineered tolerant cell lines representing human melanoma and leukemia to elucidate the dominant features defining response to BETi. We found that de novo and acquired tolerance to BETi is driven by the robustness of the apoptotic response, and that genetic or pharmacologic manipulation of the apoptotic signaling network can modify the phenotypic response to BETi. We further reveal that the expression signatures of the apoptotic genes BCL2, BCL2L1, and BAD significantly predict response to BETi. Taken together, our findings highlight the apoptotic program as a determinant of response to BETi, and provide a molecular basis for patient stratification and combination therapy development.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HL-60 , Células HT29 , Humanos , Células K562 , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Mol Cell ; 46(5): 625-35, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22681887

RESUMO

PCNA is a key component of DNA replication and repair machineries. DNA damage-induced PCNA ubiquitylation serves as a molecular mark to orchestrate postreplication repair. Here, we have identified and characterized Spartan, a protein that specifically recognizes ubiquitylated PCNA and plays an important role in cellular resistance to UV radiation. In vitro, Spartan engages ubiquitylated PCNA via both a PIP box and a UBZ domain. In cells, Spartan is recruited to sites of UV damage in a manner dependent upon the PIP box, the UBZ domain, and PCNA ubiquitylation. Furthermore, Spartan colocalizes and interacts with Rad18, the E3 ubiquitin ligase that modifies PCNA. Surprisingly, while Spartan is recruited by ubiquitylated PCNA, knockdown of Spartan compromised chromatin association of Rad18, monoubiquitylation of PCNA, and localization of Pol η to UV damage. Thus, as a "reader" of ubiquitylated PCNA, Spartan promotes an unexpected feed-forward loop to enhance PCNA ubiquitylation and translesion DNA synthesis.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/fisiologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitinação , Sequência de Aminoácidos , Linhagem Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases
6.
J Biol Chem ; 287(14): 11410-21, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22303007

RESUMO

The E3 ubiquitin ligase Cullin-ring ligase 4-Cdt2 (CRL4(Cdt2)) is emerging as an important cell cycle regulator that targets numerous proteins for destruction in S phase and after DNA damage, including Cdt1, p21, and Set8. CRL4(Cdt2) substrates contain a "PIP degron," which consists of a canonical proliferating cell nuclear antigen (PCNA) interaction motif (PIP box) and an adjacent basic amino acid. Substrates use their PIP box to form a binary complex with PCNA on chromatin and the basic residue to recruit CRL4(Cdt2) for substrate ubiquitylation. Using Xenopus egg extracts, we identify an acidic residue in PCNA that is essential to support destruction of all CRL4(Cdt2) substrates. This PCNA residue, which adjoins the basic amino acid of the bound PIP degron, is dispensable for substrate binding to PCNA but essential for CRL4(Cdt2) recruitment to chromatin. Our data show that the interaction of CRL4(Cdt2) with substrates requires molecular determinants not only in the substrate degron but also on PCNA. The results illustrate a potentially general mechanism by which E3 ligases can couple ubiquitylation to the formation of protein-protein interactions.


Assuntos
Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Xenopus/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Antígeno Nuclear de Célula em Proliferação/química , Ligação Proteica , Schizosaccharomyces/metabolismo , Especificidade por Substrato , Complexos Ubiquitina-Proteína Ligase , Ubiquitina-Proteína Ligases/química , Proteínas de Xenopus/química , Xenopus laevis/metabolismo
7.
Nature ; 471(7339): 532-6, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21399625

RESUMO

Maintenance of telomeres requires both DNA replication and telomere 'capping' by shelterin. These two processes use two single-stranded DNA (ssDNA)-binding proteins, replication protein A (RPA) and protection of telomeres 1 (POT1). Although RPA and POT1 each have a critical role at telomeres, how they function in concert is not clear. POT1 ablation leads to activation of the ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase at telomeres, suggesting that POT1 antagonizes RPA binding to telomeric ssDNA. Unexpectedly, we found that purified POT1 and its functional partner TPP1 are unable to prevent RPA binding to telomeric ssDNA efficiently. In cell extracts, we identified a novel activity that specifically displaces RPA, but not POT1, from telomeric ssDNA. Using purified protein, here we show that the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) recapitulates the RPA displacing activity. The RPA displacing activity is inhibited by the telomeric repeat-containing RNA (TERRA) in early S phase, but is then unleashed in late S phase when TERRA levels decline at telomeres. Interestingly, TERRA also promotes POT1 binding to telomeric ssDNA by removing hnRNPA1, suggesting that the re-accumulation of TERRA after S phase helps to complete the RPA-to-POT1 switch on telomeric ssDNA. Together, our data suggest that hnRNPA1, TERRA and POT1 act in concert to displace RPA from telomeric ssDNA after DNA replication, and promote telomere capping to preserve genomic integrity.


Assuntos
DNA de Cadeia Simples/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , RNA/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/genética , Telômero/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Ligação Competitiva , Proteínas de Ciclo Celular/metabolismo , Extratos Celulares , Replicação do DNA , Células HeLa , Ribonucleoproteína Nuclear Heterogênea A1 , Humanos , Ligação Proteica , RNA/genética , Fase S , Complexo Shelterina
8.
Mol Cell ; 40(1): 22-33, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20932472

RESUMO

The proper coordination between DNA replication and mitosis during cell-cycle progression is crucial for genomic stability. During G2 and mitosis, Set8 catalyzes monomethylation of histone H4 on lysine 20 (H4K20me1), which promotes chromatin compaction. Set8 levels decline in S phase, but why and how this occurs is unclear. Here, we show that Set8 is targeted for proteolysis in S phase and in response to DNA damage by the E3 ubiquitin ligase, CRL4(Cdt2). Set8 ubiquitylation occurs on chromatin and is coupled to DNA replication via a specific degron in Set8 that binds PCNA. Inactivation of CRL4(Cdt2) leads to Set8 stabilization and aberrant H4K20me1 accumulation in replicating cells. Transient S phase expression of a Set8 mutant lacking the degron promotes premature H4K20me1 accumulation and chromatin compaction, and triggers a checkpoint-mediated G2 arrest. Thus, CRL4(Cdt2)-dependent destruction of Set8 in S phase preserves genome stability by preventing aberrant chromatin compaction during DNA synthesis.


Assuntos
Proliferação de Células , Montagem e Desmontagem da Cromatina , Proteínas Culina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Fase S , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/efeitos da radiação , Proteínas Culina/genética , Dano ao DNA , Replicação do DNA , Regulação para Baixo , Instabilidade Genômica , Células HeLa , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Humanos , Metilação , Mutação , Proteínas Nucleares/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos da radiação , Fase S/efeitos dos fármacos , Fase S/efeitos da radiação , Fatores de Tempo , Ubiquitina-Proteína Ligases , Ubiquitinação , Xenopus
9.
J Bacteriol ; 191(5): 1429-38, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19074381

RESUMO

Genomic integrity is critical for an organism's survival and ability to reproduce. In Escherichia coli, the UvrD helicase has roles in nucleotide excision repair and methyl-directed mismatch repair and can limit reactions by RecA under certain circumstances. UvrD303 (D403A D404A) is a hyperhelicase mutant, and when expressed from a multicopy plasmid, it results in UV sensitivity (UV(s)), recombination deficiency, and antimutability. In order to understand the molecular mechanism underlying the UV(s) phenotype of uvrD303 cells, this mutation was transferred to the E. coli chromosome and studied in single copy. It is shown here that uvrD303 mutants are UV sensitive, recombination deficient, and antimutable and additionally have a moderate defect in inducing the SOS response after UV treatment. The UV-sensitive phenotype is epistatic with recA and additive with uvrA and is partially suppressed by removing the LexA repressor. Furthermore, uvrD303 is able to inhibit constitutive SOS expression caused by the recA730 mutation. The ability of UvrD303 to antagonize SOS expression was dependent on its 40 C-terminal amino acids. It is proposed that UvrD303, via its C terminus, can decrease the levels of RecA activity in the cell.


Assuntos
DNA Helicases/química , DNA Helicases/farmacologia , Escherichia coli K12/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/farmacologia , Regulação Bacteriana da Expressão Gênica , Mutação , Recombinases Rec A/metabolismo , Resposta SOS em Genética/efeitos dos fármacos , DNA Helicases/genética , DNA Helicases/efeitos da radiação , DNA Bacteriano/genética , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/efeitos da radiação , Recombinases Rec A/genética , Recombinação Genética , Raios Ultravioleta
10.
PLoS One ; 3(12): e4100, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19116657

RESUMO

BACKGROUND: Repairing DNA damage begins with its detection and is often followed by elicitation of a cellular response. In E. coli, RecA polymerizes on ssDNA produced after DNA damage and induces the SOS Response. The RecA-DNA filament is an allosteric effector of LexA auto-proteolysis. LexA is the repressor of the SOS Response. Not all RecA-DNA filaments, however, lead to an SOS Response. Certain recA mutants express the SOS Response (recA(C)) in the absence of external DNA damage in log phase cells. METHODOLOGY/PRINCIPAL FINDINGS: Genetic analysis of two recA(C) mutants was used to determine the mechanism of constitutive SOS (SOS(C)) expression in a population of log phase cells using fluorescence of single cells carrying an SOS reporter system (sulAp-gfp). SOS(C) expression in recA4142 mutants was dependent on its initial level of transcription, recBCD, recFOR, recX, dinI, xthA and the type of medium in which the cells were grown. SOS(C) expression in recA730 mutants was affected by none of the mutations or conditions tested above. CONCLUSIONS/SIGNIFICANCE: It is concluded that not all recA(C) alleles cause SOS(C) expression by the same mechanism. It is hypothesized that RecA4142 is loaded on to a double-strand end of DNA and that the RecA filament is stabilized by the presence of DinI and destabilized by RecX. RecFOR regulate the activity of RecX to destabilize the RecA filament. RecA730 causes SOS(C) expression by binding to ssDNA in a mechanism yet to be determined.


Assuntos
Escherichia coli K12/enzimologia , Escherichia coli K12/genética , Regulação Bacteriana da Expressão Gênica , Mutação , Recombinases Rec A/genética , Resposta SOS em Genética/fisiologia , Escherichia coli K12/classificação , Proteínas de Escherichia coli/metabolismo , Genes Bacterianos , Modelos Biológicos , Recombinases Rec A/metabolismo
11.
Mol Microbiol ; 67(1): 88-101, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18034795

RESUMO

Exonucleases can modify DNA substrates created during DNA replication, recombination and repair. In Escherichia coli, the effects of several 3'-5' exonucleases on RecA loading were studied by assaying RecA-GFP foci formation. Mutations in xthA (ExoIII), xseAB (ExoVII), xni (ExoIX), exoX (ExoX) and tatD (ExoXI) increased the number of RecA-GFP foci twofold to threefold in a population of log phase cells grown in minimal medium. These increases depend on xonA. Epistasis analysis shows that ExoVII, ExoX, ExoIX and ExoXI function in a common pathway, distinct from ExoIII (and ExoI is upstream of both pathways). It is shown (paradoxically) that in xthA mutants, RecA-GFP loading is predominantly RecBCD-dependent and that xthA recB double mutants are viable. Experiments show that while log phase xthA cells have twofold more double-stranded breaks (DSBs) than wild type, they do not induce the SOS response. The increase in RecA loading is independent of the base excision repair (BER) proteins Nth, MutM and Nei. It is proposed that log phase cells produce DSBs that do not induce the SOS response. Furthermore, ExoI, ExoIII and the other 3'-5' exonucleases process these DSBs, antagonizing the RecBCD pathway of RecA loading, thus regulating the availability of these substrates for recombination.


Assuntos
DNA Bacteriano/metabolismo , Escherichia coli K12/genética , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleases/metabolismo , Recombinases Rec A/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA Bacteriano/genética , Epistasia Genética , Escherichia coli K12/enzimologia , Escherichia coli K12/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Exodesoxirribonucleases/genética , Proteínas de Fluorescência Verde/metabolismo , Viabilidade Microbiana , Recombinases Rec A/genética , Proteínas Recombinantes de Fusão/metabolismo , Resposta SOS em Genética
12.
J Bacteriol ; 189(7): 2915-20, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17259317

RESUMO

RecA is important for recombination, DNA repair, and SOS induction. In Escherichia coli, RecBCD, RecFOR, and RecJQ prepare DNA substrates onto which RecA binds. UvrD is a 3'-to-5' helicase that participates in methyl-directed mismatch repair and nucleotide excision repair. uvrD deletion mutants are sensitive to UV irradiation, hypermutable, and hyper-rec. In vitro, UvrD can dissociate RecA from single-stranded DNA. Other experiments suggest that UvrD removes RecA from DNA where it promotes unproductive reactions. To test if UvrD limits the number and/or the size of RecA-DNA structures in vivo, an uvrD mutation was combined with recA-gfp. This recA allele allows the number of RecA structures and the amount of RecA at these structures to be assayed in living cells. uvrD mutants show a threefold increase in the number of RecA-GFP foci, and these foci are, on average, nearly twofold higher in relative intensity. The increased number of RecA-green fluorescent protein foci in the uvrD mutant is dependent on recF, recO, recR, recJ, and recQ. The increase in average relative intensity is dependent on recO and recQ. These data support an in vivo role for UvrD in removing RecA from the DNA.


Assuntos
DNA Helicases/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , DNA Helicases/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli K12/enzimologia , Proteínas de Escherichia coli/genética , Dados de Sequência Molecular , Mutagênese , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA