Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ital J Food Saf ; 9(2): 8445, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32913722

RESUMO

The aim of the study was to investigate the combined effect of the manufacturing process followed by HPP treatment on the inactivation of Salmonella spp. in artificially contaminated coppa samples, in order to verify the ability of the combined processes to achieve the objective of a 5-log reduction of Salmonella spp. needed for exportation to the U.S. Fresh anatomical cuts intended for coppa production were supplied by four different delicatessen factories located in Northern Italy. Raw meat underwent experimental contamination with Salmonella spp. using a mixture of 3 strains. Surface contamination of the fresh anatomical cuts was carried out by immersion into inoculum containing Salmonella spp. The conditions of the HPP treatment were: pressure 593 MPa, time 290 seconds, water treatment temperature 14°C. Surface and deep samples were performed post contamination (T0), end of the cold phase (T1), end of process (Tend), and after HPP treatment (postHPP) and Salmonella spp. Enumerated. The results of this study show a significant reduction of Salmonella spp. all through the production process (P<0.01) for all companies, followed by an additional reduction of bacterial counts due to HPP treatment (P<0.01), both in superficial and deep contaminations (P<0.01). The superficial overall reduction resulted of 1.58 to 5.04 log CFU/g during the production process. HPP treatment resulted in a significant (P<0.01) superficial and deep decrease in Salmonella spp. enumeration varying from 0.61 to 4.01 log and from 1.49 to 4.13 log. According to the data presented in this study, only the combined approach of coppa manufacturing process followed by HPP treatment always led to a 5-log reduction of Salmonella spp. required by USDA/FSIS guidelines.

2.
Ital J Food Saf ; 9(2): 9133, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32913727

RESUMO

In this study the effect of the application of High Pressure Treatment (HPP) combined with four different manufacturing processes on the inactivation of Listeria innocua, used as a surrogate for L. monocytogenes, in artificially contaminated coppa samples was evaluated in order to verify the most suitable strategy to meet the Listeria inactivation requirements needed for the exportation of dry-cured meat in the U.S. Fresh anatomical cuts intended for coppa production were supplied by four different delicatessen factories located in Northern Italy. Raw meat underwent experimental contamination with Listeria innocua using a mixture of 5 strains. Surface contamination of the fresh anatomical cuts was carried out by immersion into inoculum containing Listeria spp. The conditions of the HPP treatment were: pressure 593 MPa, time 290 seconds, water treatment temperature 14°C. Listeria innocua was enumerated on surface and deep samples post contamination, resting, ripening and HPP treatment. The results of this study show how the reduction of the microbial load on coppa during the production process did not vary among three companies (P>0.05) ranging from 3.73 to 4.30 log CFU/g, while it was significantly different (P<0.01) for the fourth company (0.92 log CFU/g). HPP treatment resulted in a significant (P<0.01) deep decrease of L. innocua count with values ranging between 1.63-3.54 log CFU/g with no significant differences between companies. Regarding superficial contamination, HPP treatment resulted significant (P<0.01) only in Coppa produced by two companies. The results highlight that there were processes less effective to inhibit the pathogen; in particular for company D an increase of L. innocua count was shown during processing and HPP alone cannot be able to in reaching the Listeria inactivation requirements needed for exportation of dry-cured meat in the U.S. According to the data reported in this paper, HPP treatment increases the ability of the manufacturing process of coppa in reducing Listeria count with the objective of a lethality treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA