Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(1): 761-770, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871206

RESUMO

Small RNAs (sRNAs) associate with Argonaute (AGO) proteins in effector complexes, termed RNA-induced silencing complexes (RISCs), which regulate complementary transcripts by translation inhibition and/or RNA degradation. In the unicellular alga Chlamydomonas, several metazoans, and land plants, emerging evidence indicates that polyribosome-associated transcripts can be translationally repressed by RISCs without substantial messenger RNA (mRNA) destabilization. However, the mechanism of translation inhibition in a polyribosomal context is not understood. Here we show that Chlamydomonas VIG1, an ortholog of the Drosophila melanogaster Vasa intronic gene (VIG), is required for this process. VIG1 localizes predominantly in the cytosol and comigrates with monoribosomes and polyribosomes by sucrose density gradient sedimentation. A VIG1-deleted mutant shows hypersensitivity to the translation elongation inhibitor cycloheximide, suggesting that VIG1 may have a nonessential role in ribosome function/structure. Additionally, FLAG-tagged VIG1 copurifies with AGO3 and Dicer-like 3 (DCL3), consistent with it also being a component of the RISC. Indeed, VIG1 is necessary for the repression of sRNA-targeted transcripts at the translational level but is dispensable for cleavage-mediated RNA interference and for the association of the AGO3 effector with polyribosomes or target transcripts. Our results suggest that VIG1 is an ancillary ribosomal component and plays a role in sRNA-mediated translation repression of polyribosomal transcripts.


Assuntos
Chlamydomonas reinhardtii/fisiologia , Proteínas de Plantas/metabolismo , Biossíntese de Proteínas/fisiologia , RNA Interferente Pequeno/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Proteínas Argonautas/metabolismo , Cicloeximida/farmacologia , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , Íntrons/genética , Mutação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Polirribossomos/genética , Polirribossomos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo
2.
Metabolites ; 7(2)2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28538683

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by fibrillar cytoplasmic aggregates of α-synuclein (i.e., Lewy bodies) and the associated loss of dopaminergic cells in the substantia nigra. Mutations in genes such as α-synuclein (SNCA) account for only 10% of PD occurrences. Exposure to environmental toxicants including pesticides and metals (e.g., paraquat (PQ) and manganese (Mn)) is also recognized as an important PD risk factor. Thus, aging, genetic alterations, and environmental factors all contribute to the etiology of PD. In fact, both genetic and environmental factors are thought to interact in the promotion of idiopathic PD, but the mechanisms involved are still unclear. In this study, we summarize our findings to date regarding the toxic synergistic effect between α-synuclein and paraquat treatment. We identified an essential role for central carbon (glucose) metabolism in dopaminergic cell death induced by paraquat treatment that is enhanced by the overexpression of α-synuclein. PQ "hijacks" the pentose phosphate pathway (PPP) to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. PQ also stimulated an increase in glucose uptake, the translocation of glucose transporters to the plasma membrane, and AMP-activated protein kinase (AMPK) activation. The overexpression of α-synuclein further stimulated an increase in glucose uptake and AMPK activity, but impaired glucose metabolism, likely directing additional carbon to the PPP to supply paraquat redox cycling.

3.
Mol Neurobiol ; 54(5): 3825-3842, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27324791

RESUMO

While environmental exposures are not the single cause of Parkinson's disease (PD), their interaction with genetic alterations is thought to contribute to neuronal dopaminergic degeneration. However, the mechanisms involved in dopaminergic cell death induced by gene-environment interactions remain unclear. In this work, we have revealed for the first time the role of central carbon metabolism and metabolic dysfunction in dopaminergic cell death induced by the paraquat (PQ)-α-synuclein interaction. The toxicity of PQ in dopaminergic N27 cells was significantly reduced by glucose deprivation, inhibition of hexokinase with 2-deoxy-D-glucose (2-DG), or equimolar substitution of glucose with galactose, which evidenced the contribution of glucose metabolism to PQ-induced cell death. PQ also stimulated an increase in glucose uptake, and in the levels of glucose transporter type 4 (GLUT4) and Na+-glucose transporters isoform 1 (SGLT1) proteins, but only inhibition of GLUT-like transport with STF-31 or ascorbic acid reduced PQ-induced cell death. Importantly, while autophagy protein 5 (ATG5)/unc-51 like autophagy activating kinase 1 (ULK1)-dependent autophagy protected against PQ toxicity, the inhibitory effect of glucose deprivation on cell death progression was largely independent of autophagy or mammalian target of rapamycin (mTOR) signaling. PQ selectively induced metabolomic alterations and adenosine monophosphate-activated protein kinase (AMPK) activation in the midbrain and striatum of mice chronically treated with PQ. Inhibition of AMPK signaling led to metabolic dysfunction and an enhanced sensitivity of dopaminergic cells to PQ. In addition, activation of AMPK by PQ was prevented by inhibition of the inducible nitric oxide syntase (iNOS) with 1400W, but PQ had no effect on iNOS levels. Overexpression of wild type or A53T mutant α-synuclein stimulated glucose accumulation and PQ toxicity, and this toxic synergism was reduced by inhibition of glucose metabolism/transport and the pentose phosphate pathway (6-aminonicotinamide). These results demonstrate that glucose metabolism and AMPK regulate dopaminergic cell death induced by gene (α-synuclein)-environment (PQ) interactions.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Interação Gene-Ambiente , Glucose/metabolismo , Paraquat/toxicidade , Transdução de Sinais , alfa-Sinucleína/toxicidade , Adenilato Quinase/metabolismo , Animais , Autofagia/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Encéfalo/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Metaboloma/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos
4.
Proteins ; 85(1): 93-102, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27802574

RESUMO

Protein function elucidation often relies heavily on amino acid sequence analysis and other bioinformatics approaches. The reliance is extended to structure homology modeling for ligand docking and protein-protein interaction mapping. However, sequence analysis of RPA3313 exposes a large, unannotated class of hypothetical proteins mostly from the Rhizobiales order. In the absence of sequence and structure information, further functional elucidation of this class of proteins has been significantly hindered. A high quality NMR structure of RPA3313 reveals that the protein forms a novel split ßßαß fold with a conserved ligand binding pocket between the first ß-strand and the N-terminus of the α-helix. Conserved residue analysis and protein-protein interaction prediction analyses reveal multiple protein binding sites and conserved functional residues. Results of a mass spectrometry proteomic analysis strongly point toward interaction with the ribosome and its subunits. The combined structural and proteomic analyses suggest that RPA3313 by itself or in a larger complex may assist in the transportation of substrates to or from the ribosome for further processing. Proteins 2016; 85:93-102. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte/química , Rodopseudomonas/química , Proteínas Ribossômicas/química , Ribossomos/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Clonagem Molecular , Sequência Conservada , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Ligantes , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodopseudomonas/genética , Rodopseudomonas/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
5.
Protein Sci ; 24(10): 1671-85, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26234586

RESUMO

Various missense mutations in the cytoprotective protein DJ-1 cause rare forms of inherited parkinsonism. One mutation, M26I, diminishes DJ-1 protein levels in the cell but does not result in large changes in the three-dimensional structure or thermal stability of the protein. Therefore, the molecular defect that results in loss of M26I DJ-1 protective function is unclear. Using NMR spectroscopy near physiological temperature, we found that the picosecond-nanosecond dynamics of wild-type and M26I DJ-1 are similar. In contrast, elevated amide hydrogen/deuterium exchange rates indicate that M26I DJ-1 is more flexible than the wild-type protein on longer timescales and that hydrophobic regions of M26I DJ-1 are transiently exposed to solvent. Tryptophan fluorescence spectroscopy and thiol crosslinking analyzed by mass spectrometry also demonstrate that M26I DJ-1 samples conformations that differ from the wild-type protein at 37°C. These transiently sampled conformations are unstable and cause M26I DJ-1 to aggregate in vitro at physiological temperature but not at lower temperatures. M26I DJ-1 aggregation is correlated with pathogenicity, as the structurally similar but non-pathogenic M26L mutation does not aggregate at 37°C. The onset of dynamically driven M26I DJ-1 instability at physiological temperature resolves conflicting literature reports about the behavior of this disease-associated mutant and illustrates the pitfalls of characterizing proteins exclusively at room temperature or below, as key aspects of their behavior may not be apparent.


Assuntos
Doença de Parkinson/genética , Proteína Desglicase DJ-1/química , Proteína Desglicase DJ-1/genética , Temperatura , Sequência de Aminoácidos , Dicroísmo Circular , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Mutação/genética
6.
Anal Chem ; 87(13): 6966-73, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26057465

RESUMO

We report the synthesis and application of three new antifouling diluents for the fabrication of an E-PB HIV sensor. Among the three thiolated antifouling diluents used in this study, the methoxy-terminated diluent (C6-MEG) is the most effective in alleviating both nonspecific binding and adsorption of matrix contaminants onto the sensor surface, especially when compared to the mannose- (C6-MAN) and ethylene-glycol-terminated (C6-EG) diluents. The sensor fabricated with C6-MEG has a specificity factor (∼13.5) substantially higher than the sensor passivated with only 6-mercapto-1-hexanol (∼1.5). It is functional even when employed directly in 25% serum, an achievement that has not been observed with this class of E-PB sensors. More importantly, incorporation of these antifouling diluents has negligible impact on other important sensor properties such as sensitivity and binding kinetics. This sensor passivation strategy is versatile and can potentially be used with other E-PB sensors, as well as surface-based sensors that utilize thiol-gold self-assembled monolayer chemistry.


Assuntos
Técnicas Eletroquímicas/instrumentação , Etilenoglicol/análise , Manose/análise , Peptídeos/química , Limite de Detecção
7.
Phytochemistry ; 115: 121-9, 2015 07.
Artigo em Inglês | MEDLINE | ID: mdl-25794895

RESUMO

Although sphingolipids are essential for male gametophytic development in Arabidopsis thaliana, sphingolipid composition and biosynthetic gene expression have not been previously examined in pollen. In this report, electrospray ionization (ESI)-MS/MS was applied to characterization of sphingolipid compositional profiles in pollen isolated from wild type Arabidopsis Col-0 and a long-chain base (LCB) Δ4 desaturase mutant. Pollen fractions were highly enriched in glucosylceramides (GlcCer) relative to levels previously reported in leaves. Accompanying the loss of the Δ4 unsaturated LCB sphingadiene (d18:2) in the Δ4 desaturase mutant was a 50% reduction in GlcCer concentrations. In addition, pollen glycosylinositolphosphoceramides (GIPCs) were found to have a complex array of N-acetyl-glycosylated GIPCs, including species with up to three pentose units that were absent from leaf GIPCs. Underlying the distinct sphingolipid composition of pollen, genes for key biosynthetic enzymes for GlcCer and d18:2 synthesis and metabolism were more highly expressed in pollen than in leaves or seedlings, including genes for GlcCer synthase (GCS), sphingoid base C-4 hydroxylase 2 (SBH2), LCB Δ8 desaturases (SLD1 and SLD2), and LOH2 ceramide synthase (LOH2). Overall, these findings indicate strikingly divergent sphingolipid metabolism between pollen and leaves in Arabidopsis, the significance of which remains to be determined.


Assuntos
Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Folhas de Planta/metabolismo , Pólen/metabolismo , Esfingolipídeos/metabolismo , Glucosilceramidas/análise
8.
Angew Chem Int Ed Engl ; 53(29): 7524-7530, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24890524

RESUMO

Antifungal HSAF (heat-stable antifungal factor, dihydromaltophilin) is a polycyclic tetramate macrolactam from the biocontrol agent Lysobacter enzymogenes. Its biosynthetic gene cluster contains only a single-module polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS), although two separate hexaketide chains are required to assemble the skeleton. To address the unusual biosynthetic mechanism, we expressed the biosynthetic genes in two "clean" strains of Streptomyces and showed the production of HSAF analogues and a polyene tetramate intermediate. We then expressed the PKS module in Escherichia coli and purified the enzyme. Upon incubation of the enzyme with acyl-coenzyme A and reduced nicotinamide adenine dinucleotide phosphate (NADPH), a polyene was detected in the tryptic acyl carrier protein (ACP). Finally, we incubated the polyene-PKS with the NRPS module in the presence of ornithine and adenosine triphosphate (ATP), and we detected the same polyene tetramate as that in Streptomyces transformed with the PKS-NRPS alone. Together, our results provide evidence for an unusual iterative biosynthetic mechanism for bacterial polyketide-peptide natural products.


Assuntos
Lysobacter/enzimologia , Policetídeo Sintases/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Dados de Sequência Molecular , Policetídeo Sintases/química , Análise Espectral
9.
Biochem Biophys Res Commun ; 440(4): 743-8, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24113382

RESUMO

In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of FATP2 resulted in increases in all four classes of phospholipid, indicating little selectivity. In the case of C22:6, there were significant increases of this exogenous fatty acids being trafficking into PC and PI. Collectively, these data support the conclusion that FATP2 has a dual function in the pathways linking the transport and activation of exogenous fatty acids. We discuss the differential roles of FATP2 and its role in both fatty acid transport and fatty acid activation in the context of lipid homeostasis.


Assuntos
Coenzima A Ligases/fisiologia , Ácidos Graxos/metabolismo , Transporte Biológico , Coenzima A Ligases/genética , Células HEK293 , Humanos , Metabolismo dos Lipídeos , Ácidos Fosfatídicos/metabolismo
10.
Anal Chem ; 85(9): 4453-60, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23544441

RESUMO

This report used high-performance affinity microcolumns to examine the changes in binding by sulfonylurea drugs to in vivo glycated HSA that had been isolated from individual patients with diabetes. An immunoextraction approach was developed to isolate HSA and glycated HSA from clinical samples, using only 20 µL of plasma or serum and 6-12 nmol of protein to prepare each affinity microcolumn. It was found that the affinity microcolumns could be used in either frontal analysis or zonal elution studies, which typically required only 4-8 min per run. The microcolumns had good stability and allowed data to be obtained for multiple drugs and experimental conditions over hundreds of sample application cycles. Both the overall binding, as measured by frontal analysis, and site-specific interactions, as examined by zonal elution, showed good agreement with previous data that had been obtained for in vitro glycated HSA with similar levels of modification. It was also possible to directly compare the changes in site-specific binding that occurred between sulfonylurea drugs or as the level of HSA glycation was varied. This method is not limited to clinical samples of glycated HSA but could be adapted for work with other modified proteins of interest in personalized medicine.


Assuntos
Albumina Sérica/química , Compostos de Sulfonilureia/química , Cromatografia Líquida de Alta Pressão , Humanos , Medicina de Precisão , Albumina Sérica/isolamento & purificação , Espectrofotometria Ultravioleta
11.
Mycology ; 4(4): 179-186, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24587959

RESUMO

Fumonisins are agriculturally important mycotoxins produced by the maize pathogen Fusarium verticillioides. The chemical structure of fumonisins contains two tricarballylic esters, which are rare structural moieties and important for toxicity. The mechanism for the tricarballylic ester formation is not well understood. FUM7 gene of F. verticillioides was predicted to encode a dehydrogenase/reductase, and when it was deleted, the mutant produced tetradehydro fumonisins (DH4-FB). MS and NMR analysis of DH4-FB1 indicated that the esters consist of aconitate with a 3'-alkene function, rather than a 2'-alkene function. Interestingly, the purified DH4-FB1 eventually yielded three chromatographic peaks in HPLC. However, MS revealed that the metabolites of the three peaks all had the same mass as the initial single-peak DH4-FB1. The results suggest that DH4-FB1 can undergo spontaneous isomerization, probably including both cis-trans stereoisomerization and 3'- to 2'-ene regioisomerization. In addition, when FUM7 was expressed in Escherichia coli and the resulting enzyme, Fum7p, was incubated with DH4-FB, no fumonisin with typical tricarballylic esters was formed. Instead, new fumonisin analogs that probably contained isocitrate and/or oxalosuccinate esters were formed, which reveals new insight into fumonisin biosynthesis. Together, the data provided both genetic and biochemical evidence for the mechanism of tricarballylic ester formation in fumonisin biosynthesis.

12.
Biol Open ; 1(2): 82-91, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23213400

RESUMO

The cullin-RING family of ubiquitin ligases regulates diverse cellular functions, such as cell cycle control, via ubiquitylation of specific substrates. CUL3 targets its substrates through BTB proteins. Here we show that depletion of CUL3 and the BTB protein KLHL18 causes a delay in mitotic entry. Centrosomal activation of Aurora-A, a kinase whose activity is required for entry into mitosis, is also delayed in depleted cells. Moreover, we identify Aurora-A as a KLHL18-interacting partner. Overexpression of KLHL18 and CUL3 promotes Aurora-A ubiquitylation in vivo, and the CUL3-KLHL18-ROC1 ligase ubiquitylates Aurora-A in vitro. Our study reveals that the CUL3-KLHL18 ligase is required for timely entry into mitosis, as well as for the activation of Aurora-A at centrosomes. We propose that the CUL3-KLHL18 ligase regulates mitotic entry through an Aurora-A-dependent pathway.

13.
PLoS One ; 7(7): e40537, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808186

RESUMO

HIV-1 exploits numerous host cellular pathways for productive infection. To identify novel factors involved in HIV-1 replication, HIV-1 integrase and matrix protein complexes were captured at 4 hours post infection for proteomic analysis using an affinity purification system. Leucine-rich PPR-motif containing (LRPPRC) protein, a cellular protein involved in mitochondrial function, cell metabolism, and cell-cycle progression was identified as one of the candidate HIV-1 factors. Co-immunoprecipitation RT-PCR experiments confirmed that LRPPRC associated with HIV-1 nucleic acids during the early steps of virus infection. To establish if LRPPRC was critical for HIV-1 infection, three independent LRPPRC knockdown cell lines were constructed (2.7, 3.6, and 4.1). Subcellular fractionation of these cell lines revealed differential knockdown of LRPPRC in subcellular compartments. LRPPRC was knocked down in the insoluble/cytoskeletal fractions of all three cell lines, but the 3.6 and 4.1 cells also showed a reduction in nuclear LRPPRC. Additionally, several cellular factors were downregulated and/or disrupted by loss of LRPPRC. HIV-1 infection was reduced in all three cell lines, but virus production and RNA encapsidation were unaffected, suggesting that LRPPRC was critical for the afferent stage of virus replication. Two of the three cell lines (3.6, 4.1) were refractory for murine leukemia virus infection, a virus dependent on cellular proliferation for productive infection. Consistent with this, these two cell lines exhibited reduced cellular growth with no loss of cellular viability or change in cell cycle phenotype. The early steps of virus infection were also differentially affected among the cell lines. A reduced level of preintegration complex formation was observed in all three cell lines, but viral DNA nuclear import was reduced only in the 3.6 and 4.1 cells. Combined, these data identify LRPPRC as a HIV-1 factor that is involved in HIV-1 replication through more than one mechanism.


Assuntos
Técnicas de Silenciamento de Genes , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Proteínas de Neoplasias/metabolismo , Capsídeo/metabolismo , Compartimento Celular , Núcleo Celular/metabolismo , Proliferação de Células , DNA Viral/metabolismo , Células HEK293 , Infecções por HIV/patologia , Células HeLa , Humanos , Espectrometria de Massas , Transporte Proteico , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , Frações Subcelulares/metabolismo , Montagem de Vírus
14.
Comb Chem High Throughput Screen ; 15(10): 806-15, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22708878

RESUMO

Detecting a small molecular-weight compound by electrospray ionization mass spectrometry (ESI-MS) requires the compound to obtain a charge. Factors such as gas-phase proton affinities and analyte surface activity are correlated with a positive ESI-MS response, but unfortunately it is extremely challenging to predict from a chemical structure alone if a compound is likely to yield an observable molecular-ion peak in an ESI-MS spectrum. Thus, the design of a chemical library for an ESI-MS ligand-affinity screen is particularly daunting. Only 56.9% of the compounds from our FAST-NMR functional library [1] were detectable by ESI-MS. An analysis of ~1,600 molecular descriptors did not identify any correlation with a positive ESI-MS response that cannot be attributed to a skewed population distribution. Unfortunately, our results suggest that molecular descriptors are not a valuable approach for designing a chemical library for an MS-based ligand affinity screen.


Assuntos
Descoberta de Drogas , Bibliotecas de Moléculas Pequenas/química , Técnicas de Química Combinatória , Espectrometria de Massas por Ionização por Electrospray
15.
J Virol ; 86(16): 8821-34, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22696644

RESUMO

The 331-kbp chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) genome was resequenced and annotated to correct errors in the original 15-year-old sequence; 40 codons was considered the minimum protein size of an open reading frame. PBCV-1 has 416 predicted protein-encoding sequences and 11 tRNAs. A proteome analysis was also conducted on highly purified PBCV-1 virions using two mass spectrometry-based protocols. The mass spectrometry-derived data were compared to PBCV-1 and its host Chlorella variabilis NC64A predicted proteomes. Combined, these analyses revealed 148 unique virus-encoded proteins associated with the virion (about 35% of the coding capacity of the virus) and 1 host protein. Some of these proteins appear to be structural/architectural, whereas others have enzymatic, chromatin modification, and signal transduction functions. Most (106) of the proteins have no known function or homologs in the existing gene databases except as orthologs with proteins of other chloroviruses, phycodnaviruses, and nuclear-cytoplasmic large DNA viruses. The genes encoding these proteins are dispersed throughout the virus genome, and most are transcribed late or early-late in the infection cycle, which is consistent with virion morphogenesis.


Assuntos
Paramecium/virologia , Phycodnaviridae/química , Phycodnaviridae/genética , Proteoma/análise , Proteínas Virais/análise , Genoma Viral , Espectrometria de Massas , Dados de Sequência Molecular , Fases de Leitura Aberta , Análise de Sequência de DNA
16.
Biochemistry ; 51(1): 4-6, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22182183

RESUMO

HSAF is an antifungal natural product with a new mode of action. A rare bacterial iterative PKS-NRPS assembles the HSAF skeleton. The biochemical characterization of the NRPS revealed that the thioesterase (TE) domain possesses the activities of both a protease and a peptide ligase. Active site mutagenesis, circular dichroism spectra, and homology modeling of the TE structure suggested that the TE may possess uncommon features that may lead to the unusual activities. The iterative PKS-NRPS is found in all polycyclic tetramate macrolactam gene clusters, and the unusual activities of the TE may be common to this type of hybrid PKS-NRPS.


Assuntos
Lactamas Macrocíclicas/síntese química , Lysobacter/enzimologia , Policetídeo Sintases/biossíntese , Tioléster Hidrolases/química , Amidas/química , Amidas/metabolismo , Antifúngicos/síntese química , Família Multigênica , Dobramento de Proteína , Estrutura Terciária de Proteína , Tioléster Hidrolases/biossíntese , Tioléster Hidrolases/metabolismo
17.
J Biol Chem ; 286(50): 43272-81, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22013065

RESUMO

The Pseudomonas syringae type III effector HopU1 is a mono-ADP-ribosyltransferase that is injected into plant cells by the type III protein secretion system. Inside the plant cell it suppresses immunity by modifying RNA-binding proteins including the glycine-rich RNA-binding protein GRP7. The crystal structure of HopU1 at 2.7-Å resolution reveals two unique protruding loops, L1 and L4, not found in other mono-ADP-ribosyltransferases. Site-directed mutagenesis demonstrates that these loops are essential for substrate recognition and enzymatic activity. HopU1 ADP-ribosylates the conserved arginine 49 of GRP7, and this reduces the ability of GRP7 to bind RNA in vitro. In vivo, expression of GRP7 with Arg-49 replaced with lysine does not complement the reduced immune responses of the Arabidopsis thaliana grp7-1 mutant demonstrating the importance of this residue for GRP7 function. These data provide mechanistic details how HopU1 recognizes this novel type of substrate and highlights the role of GRP7 in plant immunity.


Assuntos
ADP Ribose Transferases/metabolismo , Arabidopsis/metabolismo , Imunidade Vegetal/imunologia , Proteínas de Plantas/metabolismo , RNA de Plantas/metabolismo , ADP Ribose Transferases/genética , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
18.
J Biol Chem ; 286(35): 30670-30679, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21768100

RESUMO

The trafficking of fatty acids across the membrane and into downstream metabolic pathways requires their activation to CoA thioesters. Members of the fatty acid transport protein/very long chain acyl-CoA synthetase (FATP/Acsvl) family are emerging as key players in the trafficking of exogenous fatty acids into the cell and in intracellular fatty acid homeostasis. We have expressed two naturally occurring splice variants of human FATP2 (Acsvl1) in yeast and 293T-REx cells and addressed their roles in fatty acid transport, activation, and intracellular trafficking. Although both forms (FATP2a (M(r) 70,000) and FATP2b (M(r) 65,000 and lacking exon3, which encodes part of the ATP binding site)) were functional in fatty acid import, only FATP2a had acyl-CoA synthetase activity, with an apparent preference toward very long chain fatty acids. To further address the roles of FATP2a or FATP2b in fatty acid uptake and activation, LC-MS/MS was used to separate and quantify different acyl-CoA species (C14-C24) and to monitor the trafficking of different classes of exogenous fatty acids into intracellular acyl-CoA pools in 293T-REx cells expressing either isoform. The use of stable isotopically labeled fatty acids demonstrated FATP2a is involved in the uptake and activation of exogenous fatty acids, with a preference toward n-3 fatty acids (C18:3 and C22:6). Using the same cells expressing FATP2a or FATP2b, electrospray ionization/MS was used to follow the trafficking of stable isotopically labeled n-3 fatty acids into phosphatidylcholine and phosphatidylinositol. The expression of FATP2a resulted in the trafficking of C18:3-CoA and C22:6-CoA into both phosphatidylcholine and phosphatidylinositol but with a distinct preference for phosphatidylinositol. Collectively these data demonstrate FATP2a functions in fatty acid transport and activation and provides specificity toward n-3 fatty acids in which the corresponding n-3 acyl-CoAs are preferentially trafficked into acyl-CoA pools destined for phosphatidylinositol incorporation.


Assuntos
Coenzima A Ligases/química , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Fosfatidilinositóis/metabolismo , Motivos de Aminoácidos , Transporte Biológico , Western Blotting , Cromatografia Líquida/métodos , Coenzima A Ligases/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Humanos , Espectrometria de Massas/métodos , Modelos Biológicos , Isoformas de Proteínas , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos
19.
Clin Chim Acta ; 412(17-18): 1606-15, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21601565

RESUMO

BACKGROUND: The glycation of human serum albumin (HSA) during diabetes can affect the ability of this protein to bind drugs and small solutes in blood. This study describes the use of (16)O/(18)O-labeling and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to compare the levels of modification that occur throughout HSA under various glycation conditions in vitro. These quantitative studies build on a recent report that has identified the early and advanced glycation products that are formed on such samples of HSA. METHODS: Glycated HSA samples were prepared by incubating 42 g/l HSA with 0 to 15 mmol/l glucose at pH 7.4 and 37°C for up to 5 weeks. A control HSA sample was digested in (16)O-enriched water and glycated HSA samples were digested in the presence of (18)O-enriched water. These 2 types of samples were then mixed and the amounts of (16)O- vs. (18)O-labeled peptides were measured to determine the levels of modification that were occurring throughout HSA. RESULTS: The largest levels of modification occurred in residues 101-119, 1-10 or 42-51, 87-100, 360-372, 521-531, and 275-286 of HSA after 2 weeks of glycation, and in residues 21-41, 1-10 or 42-51, 521-531, 82-93, and 146-160 after 5 weeks of glycation. Some of these regions contained the N-terminus, K199, K439, and K525, which have been previously identified as major glycation sites on HSA. The glycation pattern of HSA was dominated by early glycation products (e.g., fructosyl-lysine) after a reaction period of 2 weeks for mildly glycated HSA, while advanced glycation end products became more prominent at longer reaction times. CONCLUSIONS: The time course of the observed modifications indicated that the pattern of glycation products changed as HSA was incubated over longer periods of time with glucose. Several regions found to have significant levels of modification were at or near the major drug binding regions on HSA. These results explain why the interaction of some drugs with HSA has been observed to vary with the level of glycation for this protein.


Assuntos
Glucose/metabolismo , Albumina Sérica/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Isótopos de Oxigênio , Albumina Sérica/química
20.
Nucleic Acids Res ; 39(11): 4709-18, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21245040

RESUMO

Eukaryotes produce multiple products from a single gene locus by alternative splicing, translation or promoter usage as mechanisms expanding the complexity of their proteome. Trithorax proteins, including the Arabidopsis Trithorax-like protein ATX1, are histone modifiers regulating gene activity. Here, we report that a novel member of the Trithorax family has a role unrelated to chromatin. It is encoded from an internal promoter in the ATX1 locus as an isoform containing only the SET domain (soloSET). It is located exclusively in the cytoplasm and its substrate is the elongation factor 1A (EF1A). Loss of SET, but not of the histone modifying ATX1-SET activity, affects cytoskeletal actin bundling illustrating that the two isoforms have distinct functions in Arabidopsis cells.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Citoesqueleto de Actina/ultraestrutura , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/fisiologia , Citoplasma/metabolismo , Histona-Lisina N-Metiltransferase , Metilação , Mutação , Fator 1 de Elongação de Peptídeos/metabolismo , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Estrutura Terciária de Proteína , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA