Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 16(3)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38608454

RESUMO

High failure rates of the current drug development process are driving exemplary changes toward methodologies centered on human diseasein-vitromodeling. Organoids are self-organized tissue sub-units resembling their organ of origin and are widely acknowledged for their unique potential in recapitulating human physio-pathological mechanisms. They are transformative for human health by becoming the platform of choice to probe disease mechanisms and advance new therapies. Furthermore, the compounds' validation as therapeutics represents another point of the drug development pipeline where organoids may provide key understandings and help pharma organizations replace or reduce animal research. In this review, we focus on gastrointestinal organoid models, which are currently the most advanced organoid models in drug development. We focus on experimental validations of their value, and we propose avenues to enhance their use in drug discovery and development, as well as precision medicine and diagnostics.


Assuntos
Desenvolvimento de Medicamentos , Organoides , Medicina de Precisão , Humanos , Organoides/efeitos dos fármacos , Organoides/citologia , Organoides/metabolismo , Animais , Descoberta de Drogas , Modelos Biológicos , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo
3.
Fluids Barriers CNS ; 18(1): 43, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34544422

RESUMO

BACKGROUND: The pathways that control protein transport across the blood-brain barrier (BBB) remain poorly characterized. Despite great advances in recapitulating the human BBB in vitro, current models are not suitable for systematic analysis of the molecular mechanisms of antibody transport. The gaps in our mechanistic understanding of antibody transcytosis hinder new therapeutic delivery strategy development. METHODS: We applied a novel bioengineering approach to generate human BBB organoids by the self-assembly of astrocytes, pericytes and brain endothelial cells with unprecedented throughput and reproducibility using micro patterned hydrogels. We designed a semi-automated and scalable imaging assay to measure receptor-mediated transcytosis of antibodies. Finally, we developed a workflow to use CRISPR/Cas9 gene editing in BBB organoid arrays to knock out regulators of endocytosis specifically in brain endothelial cells in order to dissect the molecular mechanisms of receptor-mediated transcytosis. RESULTS: BBB organoid arrays allowed the simultaneous growth of more than 3000 homogenous organoids per individual experiment in a highly reproducible manner. BBB organoid arrays showed low permeability to macromolecules and prevented transport of human non-targeting antibodies. In contrast, a monovalent antibody targeting the human transferrin receptor underwent dose- and time-dependent transcytosis in organoids. Using CRISPR/Cas9 gene editing in BBB organoid arrays, we showed that clathrin, but not caveolin, is required for transferrin receptor-dependent transcytosis. CONCLUSIONS: Human BBB organoid arrays are a robust high-throughput platform that can be used to discover new mechanisms of receptor-mediated antibody transcytosis. The implementation of this platform during early stages of drug discovery can accelerate the development of new brain delivery technologies.


Assuntos
Anticorpos/metabolismo , Bioengenharia/métodos , Barreira Hematoencefálica/metabolismo , Organoides/metabolismo , Receptores da Transferrina/metabolismo , Transcitose/fisiologia , Animais , Anticorpos/análise , Astrócitos/química , Astrócitos/metabolismo , Barreira Hematoencefálica/química , Barreira Hematoencefálica/citologia , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/química , Células Endoteliais/metabolismo , Humanos , Organoides/química , Organoides/citologia , Pericitos/química , Pericitos/metabolismo , Receptores da Transferrina/análise
4.
Nat Biomed Eng ; 4(9): 863-874, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32514094

RESUMO

Stem-cell-derived epithelial organoids are routinely used for the biological and biomedical modelling of tissues. However, the complexity, lack of standardization and quality control of stem cell culture in solid extracellular matrices hampers the routine use of the organoids at the industrial scale. Here, we report the fabrication of microengineered cell culture devices and scalable and automated methods for suspension culture and real-time analysis of thousands of individual gastrointestinal organoids trapped in microcavity arrays within a polymer-hydrogel substrate. The absence of a solid matrix substantially reduces organoid heterogeneity, which we show for mouse and human gastrointestinal organoids. We use the devices to screen for anticancer drug candidates with patient-derived colorectal cancer organoids, and apply high-content image-based phenotypic analyses to reveal insights into mechanisms of drug action. The scalable organoid-culture technology should facilitate the use of organoids in drug development and diagnostics.


Assuntos
Técnicas de Cultura de Células/métodos , Organoides/citologia , Células-Tronco/citologia , Animais , Agregação Celular , Células Cultivadas , Dimetilpolisiloxanos/química , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Hidrogéis/química , Intestinos/citologia , Camundongos , Organogênese , Organoides/efeitos dos fármacos , Organoides/crescimento & desenvolvimento
6.
Elife ; 82019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30803481

RESUMO

Antimicrobial peptides (AMPs) are host-encoded antibiotics that combat invading microorganisms. These short, cationic peptides have been implicated in many biological processes, primarily involving innate immunity. In vitro studies have shown AMPs kill bacteria and fungi at physiological concentrations, but little validation has been done in vivo. We utilized CRISPR gene editing to delete all known immune-inducible AMPs of Drosophila, namely: 4 Attacins, 4 Cecropins, 2 Diptericins, Drosocin, Drosomycin, Metchnikowin and Defensin. Using individual and multiple knockouts, including flies lacking all 14 AMP genes, we characterize the in vivo function of individual and groups of AMPs against diverse bacterial and fungal pathogens. We found that Drosophila AMPs act primarily against Gram-negative bacteria and fungi, contributing either additively or synergistically. We also describe remarkable specificity wherein certain AMPs contribute the bulk of microbicidal activity against specific pathogens, providing functional demonstrations of highly specific AMP-pathogen interactions in an in vivo setting.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Drosophila/imunologia , Imunidade Inata , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Bactérias/imunologia , Drosophila/genética , Fungos/imunologia , Deleção de Genes , Técnicas de Inativação de Genes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA