Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pain ; 164(5): 1051-1066, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36448978

RESUMO

ABSTRACT: The nucleus of the solitary tract (NTS) contains pro-opiomelanocortin (POMC) neurons that are 1 of the 2 major sources of ß-endorphin in the brain. The functional role of these NTS POMC neurons in nociceptive and cardiorespiratory function is debated. We have shown that NTS POMC optogenetic activation produces bradycardia and transient apnoea in a working heart-brainstem preparation and chemogenetic activation with an engineered ion channel (PSAM) produced opioidergic analgesia in vivo. To better define the role of the NTS POMC neurons in behaving animals, we adopted in vivo optogenetics (ChrimsonR) and excitatory/inhibitory chemogenetic DREADD (hM3Dq/hM4Di) strategies in POMC-Cre mice. We show that optogenetic activation of NTS POMC neurons produces time-locked, graded, transient bradycardia and bradypnoea in anaesthetised mice that is naloxone sensitive (1 mg/kg, i.p.), suggesting a role of ß-endorphin. Both optogenetic and chemogenetic activation of NTS POMC neurons produces sustained thermal analgesia in behaving mice that can be blocked by naloxone. It also produced analgesia in an inflammatory pain model (carrageenan) but not in a neuropathic pain model (tibial nerve transection). Inhibiting NTS POMC neurons does not produce any effect on basal nociception but inhibits stress-induced analgesia (unlike inhibition of arcuate POMC neurons). Activation of NTS POMC neuronal populations in conscious mice did not cause respiratory depression, anxiety, or locomotor deficit (in open field) or affective preference. These findings indicate that NTS POMC neurons play a key role in the generation of endorphinergic endogenous analgesia and can also regulate cardiorespiratory function.


Assuntos
Analgesia , Pró-Opiomelanocortina , Camundongos , Animais , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/farmacologia , Núcleo Solitário , Bradicardia , beta-Endorfina , Neurônios , Naloxona/farmacologia , Dor
2.
PLoS One ; 11(4): e0153187, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27077912

RESUMO

Opioids are widely used medicinally as analgesics and abused for hedonic effects, actions that are each complicated by substantial risks such as cardiorespiratory depression. These drugs mimic peptides such as ß-endorphin, which has a key role in endogenous analgesia. The ß-endorphin in the central nervous system originates from pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and nucleus of the solitary tract (NTS). Relatively little is known about the NTSPOMC neurons but their position within the sensory nucleus of the vagus led us to test the hypothesis that they play a role in modulation of cardiorespiratory and nociceptive control. The NTSPOMC neurons were targeted using viral vectors in a POMC-Cre mouse line to express either opto-genetic (channelrhodopsin-2) or chemo-genetic (Pharmacologically Selective Actuator Modules). Opto-genetic activation of the NTSPOMC neurons in the working heart brainstem preparation (n = 21) evoked a reliable, titratable and time-locked respiratory inhibition (120% increase in inter-breath interval) with a bradycardia (125±26 beats per minute) and augmented respiratory sinus arrhythmia (58% increase). Chemo-genetic activation of NTSPOMC neurons in vivo was anti-nociceptive in the tail flick assay (latency increased by 126±65%, p<0.001; n = 8). All effects of NTSPOMC activation were blocked by systemic naloxone (opioid antagonist) but not by SHU9119 (melanocortin receptor antagonist). The NTSPOMC neurons were found to project to key brainstem structures involved in cardiorespiratory control (nucleus ambiguus and ventral respiratory group) and endogenous analgesia (periaqueductal gray and midline raphe). Thus the NTSPOMC neurons may be capable of tuning behaviour by an opioidergic modulation of nociceptive, respiratory and cardiac control.


Assuntos
Analgesia , Bradicardia/metabolismo , Tronco Encefálico/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Insuficiência Respiratória/metabolismo , Analgésicos Opioides/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Tronco Encefálico/citologia , Tronco Encefálico/efeitos dos fármacos , Channelrhodopsins , Feminino , Masculino , Hormônios Estimuladores de Melanócitos/farmacologia , Camundongos Transgênicos , Microscopia Confocal , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Neurônios/efeitos dos fármacos , Núcleo Solitário/citologia , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA