Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 7(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34682230

RESUMO

This work aimed to examine the bioleaching of manganese oxides at various oxidation states (MnO, MnO·Mn2O3, Mn2O3 and MnO2) by a strain of the filamentous fungus Aspergillus niger, a frequent soil representative. Our results showed that the fungus effectively disintegrated the crystal structure of selected mineral manganese phases. Thereby, during a 31-day static incubation of oxides in the presence of fungus, manganese was bioextracted into the culture medium and, in some cases, transformed into a new biogenic mineral. The latter resulted from the precipitation of extracted manganese with biogenic oxalate. The Mn(II,III)-oxide was the most susceptible to fungal biodeterioration, and up to 26% of the manganese content in oxide was extracted by the fungus into the medium. The detected variabilities in biogenic oxalate and gluconate accumulation in the medium are also discussed regarding the fungal sensitivity to manganese. These suggest an alternative pathway of manganese oxides' biodeterioration via a reductive dissolution. There, the oxalate metabolites are consumed as the reductive agents. Our results highlight the significance of fungal activity in manganese mobilization and transformation. The soil fungi should be considered an important geoactive agent that affects the stability of natural geochemical barriers.

2.
Int J Mol Sci ; 22(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34576122

RESUMO

Iron-based nanomaterials have high technological impacts on various pro-environmental applications, including wastewater treatment using the co-precipitation method. The purpose of this research was to identify the changes of iron nanomaterial's structure caused by the presence of selenium, a typical water contaminant, which might affect the removal when the iron co-precipitation method is used. Therefore, we have investigated the maturation of co-precipitated nanosized ferric oxyhydroxides under alkaline conditions and their thermal transformation into hematite in the presence of selenite and selenate with high concentrations. Since the association of selenium with precipitates surfaces has been proven to be weak, the mineralogy of the system was affected insignificantly, and the goethite was identified as an only ferric phase in all treatments. However, the morphology and the crystallinity of ferric oxyhydroxides was slightly altered. Selenium affected the structural order of precipitates, especially at the initial phase of co-precipitation. Still, the crystal integrity and homogeneity increased with time almost constantly, regardless of the treatment. The thermal transformation into well crystalized hematite was more pronounced in the presence of selenite, while selenate-treated and selenium-free samples indicated the presence of highly disordered fraction. This highlights that the aftermath of selenium release does not result in destabilization of ferric phases; however, since weak interactions of selenium are dominant at alkaline conditions with goethite's surfaces, it still poses a high risk for the environment. The findings of this study should be applicable in waters affected by mining and metallurgical operations.


Assuntos
Álcalis/química , Compostos Férricos/química , Ácido Selênico/química , Ácido Selenioso/química , Precipitação Química , Cristalização , Ferro/química , Compostos de Ferro/química , Minerais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia de Mossbauer , Temperatura
3.
Chemosphere ; 269: 128733, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33131728

RESUMO

Iron-containing spontaneously precipitated ochreous sediments serve as natural scavengers of various migrating elements and in this way contribute to removal and immobilization of potentially hazardous elements especially from mine drainage outflows. On the other hand, presence of filamentous fungi in their surroundings triggers biotransformation and contributes to the mobility of these elements. Three groups of samples of spontaneously precipitated ochreous sediments from an abandoned antimony mine in Poproc, Slovakia were studied: as-collected, sterilized at 95 °C for 30 min, and exposed to incubation with filamentous fungus Aspergillus niger which is frequently found in soils. Employing chemical analyses have determined the content of Fe, As, Sb, and Zn in the samples as well as their mobilization among the non-dissolved residue, culture medium of the fungus and/or its biomass. Significant degree of biovolatilization of antimony was unveiled. Speciation of iron was performed by 57Fe Mössbauer spectroscopy performed in a wide temperature range 300-4.2 K and external magnetic field of 6 T. Hyperfine interactions between 57Fe nuclei and their electronic shells have revealed superparamagnetic behavior characteristic for small particles. Their blocking temperatures of 46, 53, and 40 K, respectively, indicate a dependence of the size of the particles upon the sample treatment. While sterilization has supported their growth, incubation with fungus has changed their chemical environment and removed mainly bigger particles.


Assuntos
Antimônio , Poluentes do Solo , Antimônio/análise , Fungos , Ferro , Eslováquia , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA