Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Mar Environ Res ; 196: 106410, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422819

RESUMO

An important number of studies have evaluated the presence of microplastics, particles with a size below 5 mm, in aquatic organisms. Studies have shown that these fragments are widely present in the marine environment, but research on the estuarine ecosystem is still scarce. In this study, two different approaches were used to evaluate the presence and ingestion of plastic particles in the ragworm Hediste diversicolor: a field study for the environmental assessment and a laboratory experiment in controlled condition. For the environmental evaluation, ingestion of microplastics was evaluated in the ragworm H. diversicolor sampled from the mudflats of the Seine estuary (France) during March and June 2017 and 2018, on two locations: S1 and S2, both characterized by high anthropogenic pressures, and for S2 a more influential hydrodynamic component. Ingestion of microplastics was measured in ragworms tissues and in gut content (sediment) after depuration. The number of particles as well as their size, shape and color were reported and compared between sampling period and locations. Results showed the presence of a low number of particles in both worms and gut content. In gut content, 45.6% and 87.58% of samples from site S1 and S2 respectively contained plastic like particles. In worms, 41.7% (S1) and 75.8% (S2) of analysed samples contained plastic like items. The lowest mean number of particles was 0.21 ± 0.31 (S1 in June 2017) in worms' tissues, but 0.80 ± 0.90 (S1 in June 2017) in the gut content and the highest was 1.47 ± 1.41 (S2 in April 2017) while the highest number was 2.55 ± 2.06 (S2 in June 2017) in worms and gut content respectively. The majority of suspected microplastics observed were fibers (66%) and fragments (27%), but films (3.7%) foam (2.1%), and granules (0.2%) were also identified. In addition, the most polymer type observed by Raman spectroscopy was polypropylene. Furthermore, a preliminary study of the ingestion and egestion of fluorescent polyethylene (PE) microbeads in the digestive tract of ragworms was conducted after exposure through water, during 1h at 1.2 × 106 MP/mL. Results showed a rapid turnover of PE microbeads throughout the digestive tract of worms especially after exposure through water. This study revealed that microplastics are ingested by the ragworm H. diversicolor but do not seem to bioaccumulate. More research is needed to measure potential chronic effects of microplastics on physiological parameters of H. diversicolor and potential trophic transfer of microplastics.


Assuntos
Poliquetos , Poluentes Químicos da Água , Animais , Ecossistema , Microplásticos , Plásticos , Poliquetos/fisiologia , Polietileno , Água , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 905: 167302, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37742965

RESUMO

Rare earth elements (REE) are emerging contaminants due to their increased use in diverse applications including cutting-edge and green-technologies. Their environmental concerns and contradicting results concerning their biological effects require an extensive understanding of REE ecotoxicology. Thus, we have studied the fate, bioaccumulation and biological effects of three representative REE, neodymium (Nd), gadolinium (Gd) and ytterbium (Yb), individually and in mixture, using the freshwater bivalve Corbicula fluminea. The organisms were exposed for 96 h at 1 mg L-1 REE in the absence and presence of dissolved organic matter (DOM) reproducing an environmental contamination. Combined analysis of the fate, distribution and effects of REE at tissue and subcellular levels allowed a comprehensive understanding of their behaviour, which would help improving their environmental risk assessment. The bivalves accumulated significant concentrations of Nd, Gd and Yb, which were decreased in the presence of DOM likely due to the formation of REE-DOM complexes that reduced REE bioavailability. The accumulation of Nd, Gd and Yb differed between tissues, with gills > digestive gland ≥ rest of soft tissues > hemolymph. In the gills and in the digestive gland, Nd, Gd and Yb were mostly (>90 %) distributed among metal sensitive organelles, cellular debris and detoxified metal-rich granules. Gadolinium, Yb and especially Nd decreased lysosome size in the digestive gland and disturbed osmo- and iono-regulation of C. fluminea by decreasing Na concentrations in the hemolymph and Ca2+ ATPase activity in the gills. Individual and mixed Nd, Gd and Yb exhibited numerous similarities and some differences in terms of fate, accumulation and biological effects, possibly because they have common abiotic and biotic ligands but different affinities for the latter. In most cases, individual and mixed effects of Nd, Gd, Yb were similar suggesting that additivity approach is suitable for the environmental risk assessment of REE mixtures.


Assuntos
Corbicula , Metais Terras Raras , Poluentes Químicos da Água , Animais , Gadolínio/toxicidade , Gadolínio/análise , Metais Terras Raras/toxicidade , Metais Terras Raras/análise , Água Doce , Ecotoxicologia , Poluentes Químicos da Água/análise
3.
Ecotoxicology ; 32(9): 1125-1140, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37740166

RESUMO

The dispersed pollution caused by microplastics (MPs) represents a current and global concern. While the fragmentation of plastic debris into smaller particles occurs in rivers, little MP research is done on freshwater species and is published compared to the marine environment. The Loire River is the longest river in France and is subject to moderate to high anthropic pressure while it represents major societal and economic issues. However, there are not many studies that have been put forward with regards to the effect of environmental MPs (EMPs) on aquatic organisms and no policies have been enacted to monitor the plastic pollution. In this study, freshwater bivalves, Corbicula fluminea, were exposed for 21 days to environmentally relevant concentrations of a mixture of <200 µm MPs generated from plastic litter collected directly along the banks of the Loire River. This mixture was composed of 40% polyethylene (PE), 40% polypropylene (PP), 10% polyethylene terephthalate (PET) and 10% polyvinylchloride (PVC) (mass percentage). Ecotoxicological effects were assessed from the individual to the molecular levels on several endpoints: condition index, filtration efficiency, enzyme activities, lipid peroxidation, energy reserves and gene expression. The ingestion of EMPs caused damages at the biochemical level. Indeed, we reported an increase in catalase activity in gills and digestive mass, a decrease in TBARs in gills, a decrease in acetylcholinesterase activity in the digestive mass, a decrease of glycogen and lipid contents in the whole organisms and a significant induction of the expression of gst, cat, mp, acp genes. The current results suggest therefore that long-term exposure to realistic doses of EMPs causes toxicity towards freshwater benthic biota. The analysis of biomarker activities and the analysis of gene expression are complementary to prevent the effects of a plastic contamination at higher biological levels in aquatic organisms.


Assuntos
Corbicula , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Rios , Acetilcolinesterase , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
4.
Mar Environ Res ; 191: 106159, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37683560

RESUMO

The aim of this study was to explore the adverse effects of a microplastic (MP) mixture obtained from litter accumulated in the Seine River (France) compared to those of their major co-plasticizer, dibutylphthalate (DBP), on the sentinel species Hediste diversicolor. A suite of biomarkers has been investigated to study the impacts of MPs (100 mg kg-1 sediment), DBP (38 µg kg-1 sediment) on worms compared to non-exposed individuals after 4 and 21 days. The antioxidant response, immunity, neurotoxicity and energy and respiratory metabolism were investigated using biomarkers. After 21 days, worms exposed to MPs showed an increasing aerobic metabolism, an enhancement of both antioxidant and neuroimmune responses. Energy-related biomarkers demonstrated that the energy reallocated to the defence system may come from proteins. A similar impact was depicted after DBP exposure, except for neurotoxicity. Our results provide a better understanding of the ecotoxicological effects of environmental MPs and their associated-contaminants on H. diversicolor.


Assuntos
Poliquetos , Poluentes Químicos da Água , Humanos , Animais , Microplásticos , Espécies Sentinelas/metabolismo , Antioxidantes , Plastificantes/toxicidade , Plastificantes/metabolismo , Plásticos/toxicidade , Rios , Dibutilftalato/toxicidade , Dibutilftalato/metabolismo , Biomarcadores/metabolismo , Poliquetos/fisiologia , Poluentes Químicos da Água/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-37572933

RESUMO

Small plastic particles, microplastics (MPs) and nanoplastics (NPs) represent a major threat in aquatic environments. Freshwater organisms are exposed to MPs and NPs, particularly in industrial and urban areas. The present study aimed to compare the toxicity between polystyrene NPs (PS NPs) and environmental microplastics (ENV MPs) and nanoplastics (ENV NPs) generated from macro-sized debris collected in the Garonne River on the freshwater bivalve C. fluminea. The organisms were exposed to the different plastic particles at three environmentally relevant concentrations: 0.008, 10, and 100 µg L-1 for 21 days. The biological responses of organisms were assessed using a multi-biomarker approach from the sub-individual to the individual level. The results demonstrated that: i) ENV NPs triggered more effects on detoxification processes and immune response, confirming that using manufactured NPs for laboratory exposure can lead to misleading conclusions on the risks posed by plastic particles; ii) effects of ENV MPs were less marked than ENV NPs, emphasizing the importance of testing a size continuum of plastic particles from NPs to MPs; iii) some effects were only observed for the low and/or intermediate concentrations tested, underlining the importance of using environmentally relevant concentrations. In light of these results, laboratory studies should be continued by exposing aquatic species to environmental MPs and NPs. The properties of these particles have to be characterized for a better risk assessment of environmental plastic particles.


Assuntos
Corbicula , Poluentes Químicos da Água , Animais , Poliestirenos/toxicidade , Microplásticos/toxicidade , Plásticos/toxicidade , Poluentes Químicos da Água/análise
6.
Environ Pollut ; 334: 122167, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437763

RESUMO

The contamination of microplastics (MP) in freshwater environments represent a major way for the MP transport in the environment. The assessment of MP pollution in freshwater compartments is then important to visualize the pressure and the impacts on medium, and to set up necessary measures. In this context, this study focused on the influence of anthropogenic activities of a medium French city (Angers) on MP levels in samples collected from the Loire River, the longest river in France. Abiotic and biotic matrices were collected upstream and downstream Angers. A first analysis was performed based on microscopy to determine the size, colour and shape of suspected MP and a complementary analysis by µ-FTIR (micro-Fourier Transform InfraRed) was conducted to determine the composition of plastic particles. Three organisms belonging to different trophic levels were studied: when the MP level was expressed per individual, the lowest abundance of MP was found in Tubifex sp. Followed by Corbicula fluminea, while the highest was measured in Anguilla anguilla. To establish the relationship with their habitat, the presence of MP in sediment and water was also analysed. Therefore, this works constitutes a complete overview of the MP levels in freshwater abiotic and biotic matrices. Overall, the presence of MP in analysed samples did not follow a particular pattern, neither in the sites nor matrices: the characteristics depending on a multifactorial outcome (feeding mode, organism size …). However, correlation of MP pattern between clams and sediment was quite evident, while the one between worms and their habitat was not. This demonstrates the relevance of investigating plastic contamination both in biotic and abiotic matrices. Finally, a standardisation of sampling and analytical analysis protocols would be helpful to make comparisons between studies more robust.


Assuntos
Corbicula , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Água Doce/análise , França
7.
Environ Sci Pollut Res Int ; 30(40): 91534-91562, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37495809

RESUMO

Plastic pollution has become a global and emergency concern. Degradation processes of plastic macrowaste, either at the millimetre- and micrometre-size scales (microplastics, MP) or a nanometre one (nanoplastic, NP), is now well documented in all environmental compartments. It is hence necessary to study the environmental dynamic of MNP (micro(nano)plastic) on aquatic macrofauna considering their dispersion in different compartments. In this context, worms, having a large habitat in natural environments (soil, sediment, water) represent a relevant model organism for MNP investigations. In aquatic systems, worms could be used to compare MNP contamination between freshwater and seawater. The aim of this review was to discuss the relevance of using worms as model species for investigating MNP pollution in freshwater, estuarine, and marine systems. In this context, studies conducted in the field and in laboratory, using diverse classes of aquatic worms (polychaete and clitellate, i.e. oligochaete and hirudinea) to assess plastic contamination, were analysed. In addition, the reliability between laboratory exposure conditions and the investigation in the field was discussed. Finally, in a context of plastic use regulation, based on the literature, some recommendations about model species, environmental relevance, and experimental needs related to MNP are given for future studies.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Monitoramento Ambiental , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise , Ecossistema , Água Doce , Organismos Aquáticos
8.
Mar Pollut Bull ; 189: 114767, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36870134

RESUMO

In the present study, effects of aging MPs of polyethylene (PE) were investigated in the marine mussel Mytilus edulis, commonly used as bioindicator of aquatic ecosystem, using both in vitro and in vivo exposures, using concentrations found in marine waters (0.008, 10 and 100 µg.L-1). Changes in gene expression levels implicated in detoxification, immune system, cytoskeletton and cell cycle control were evaluated by quantitative RT-qPCR. Results demonstrated differential expression levels depending upon the state of plastic degradation (aged vs non-aged) and way of exposure (vitro vs vivo). This study highlighted the interest of using molecular biomarkers based on analysis of gene expression pattern in an ecotoxicological context that gives indication of relative slight changes between tested conditions as compared to other biochemical approaches (e.g. enzymatic activities). In addition, in vitro analysis could be used to generate large amount of data as regards to the toxicological effects of MPs.


Assuntos
Expressão Gênica , Microplásticos , Mytilus edulis , Poluentes Químicos da Água , Animais , Ecossistema , Expressão Gênica/efeitos dos fármacos , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade
9.
Environ Sci Pollut Res Int ; 30(16): 45725-45739, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36708472

RESUMO

Plastic has been largely detected in estuarine environments and represents major concern towards aquatic living organisms. The present study evaluates the impact of microplastics (MPs) and nanoplastics (NPs) under realistic exposure conditions. Scrobicularia plana individuals were exposed to low concentrations (0.008, 10, and 100 µg L-1) of environmental MPs and NPs as well as to standard PS NPs, as a comparison condition. The aim of this study was to understand the ecotoxicological effects of environmental plastic particles on S. plana gills and digestive glands but also to compare the effects of plastic polymers size in order to highlight if the size could induce different toxicity profiles within this model organism, at different levels of biological organization. Results showed a differential induction of detoxification enzymes (CAT, GST), immunity (AcP), DNA damage processes as well as a differential effect on behavior and condition index of animals depending upon the type of plastic, the size, the concentration tested, and the type of organ. This study underlines the necessity of testing (i) plastics collected from the environment as compared to standard ones and (ii) the effect of size using plastics coming from the same batch of macrosized plastics. This study concludes on the future need directions that plastic-based studies must take in order to be able to generate a large quantity of relevant data that could be used for future regulatory needs on the use of plastic.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Organismos Aquáticos
10.
Artigo em Inglês | MEDLINE | ID: mdl-36396088

RESUMO

For several decades, plastic has been a global threat in terms of pollution. Plastic polymers, when introduce in the aquatic environment, are exposed to fragmentation processes into microplastics (MPs) and nanoplastics (NPs) which could potentially interact with living organisms. The objective of this work was to study the effects of plastic particles representative of those found in the environment, on the marine mussels Mytilus edulis, under two exposure scenarios: in vivo and in vitro. Whole mussels or cultured hemocytes were exposed for 24 h to NPs and MPs generated from macro-sized plastics collected in the field, but also to reference NPs, at concentrations found in the environment: 0.08, 10 µg and 100 µg·L-1. Results showed that immune response was only activated when mussels were exposed in vivo. However, cytotoxicity (hemocyte mortality) and genotoxicity (DNA damage) parameters were induced after both types of exposure, but in a dose-dependent manner after in vitro hemocyte exposure to all tested plastic conditions. These results indicate that in vitro approaches could be considered as potential predictors of in vivo exposures.


Assuntos
Mytilus edulis , Mytilus , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Alimentos Marinhos/análise , Poluentes Químicos da Água/análise
11.
Sci Total Environ ; 838(Pt 4): 156519, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35690197

RESUMO

Plastics pollution in marine environment has become an issue of increasing scientific concern. This work aims to study the temporal and spatial distribution of plastics in sediments from three different Tunisian ecosystems; Rimel Beach, Bizerta lagoon and Ichkeul lake. Sediment sampling was conducted in surface (2 cm) and depth (15 cm) during spring, summer and winter. Plastics debris were separated by size fractions: macro (>5 mm), meso (1-5 mm) and microplastics (<1 mm) to optimize the time necessary for their characterisation. Macroplastics and mesoplastics were identified using an IR Attenuated total reflectance (ATR) and microplastics with Imaging Fourier transform infrared spectroscopy (FTIR) spectroscopy after an optimized extraction protocol. Results indicate that, the lowest contamination degree with macroplastics was recorded in Ichkeul lake, 2 macro debris/m2 (marine protected area, national parc of Ichkeul). Mesoparticles were only detected in lagoon of Bizerte in large quantities (4900 item/kg of sediment in surface and 680 item/kg of sediment in depth) and were identified principally as paint products. For microplastics, the repartition was quite homogeneous between the three sites with an average abundance was 130.55 ± 65.61 items/kg for all seasons. The variations of microplastics abundances on the three sites could not be clearly related to the seasons. Whereas the polymer characterisation in the surface and depth sediments of the three studied areas were principally due to eight types of polymers (PVC, PET, PP, PE PS, Polyamide (PA) and polymeric methyl methacrylate (PMMA)) as reported in many other studies, surprisingly all MPs recovered in the study were smaller than 300 µm, >70 % being fragments. This study brings new results as regards to the state of plastic contamination in Tunisian coast and shows the importance of investigating different ecosystems in such studies.


Assuntos
Sedimentos Geológicos , Microplásticos , Poluentes Químicos da Água , Ecossistema , Sedimentos Geológicos/química , Lagos , Microplásticos/análise , Estações do Ano , Análise Espacial , Espectroscopia de Infravermelho com Transformada de Fourier , Tunísia , Poluentes Químicos da Água/análise
12.
Nanotoxicology ; 15(9): 1168-1179, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34674596

RESUMO

The widespread use and release of nanomaterials (NMs) in aquatic ecosystems is a concerning issue as well as the fate and behavior of the NMs in relation to the aquatic organisms. In this work, the freshwater microcrustacean Daphnia magna was exposed to 12 different and well-known NMs under the same conditions for 24 h and then placed in clean media for 120 h, in order to determine their different uptake and elimination behaviors. The results showed that most of the tested NMs displayed a fast uptake during the first hours arriving to a plateau by the end of the uptake phase. The elimination behavior was determined by a fast loss of NMs during the first hours in the clean media, mainly stimulated by the presence of food. Remaining NMs concentrations can still be found at the end of the elimination phase. Two NMs had a different profile (i) ZnO-NM110 exhibited increase and loss during the uptake phase, and (ii) SiO2-NM204 did not show any uptake. A toxicokinetic model was applied and the uptake and elimination rates were found along with the dynamic bioconcentration factors. These values allowed to compare the NMs, to cluster them by their similar rates, and to determine that the TiO2-NM102 is the one that has the fastest uptake and elimination behavior, SiO2-NM204 has the slowest uptake and CeO2 <10 nm has the slowest elimination. The present work represents a first attempt to compare different NMs based on their uptake and elimination behaviors from a perspective of the nano-bio interactions influence.


Assuntos
Nanoestruturas , Poluentes Químicos da Água , Animais , Daphnia , Ecossistema , Água Doce , Cinética , Nanoestruturas/toxicidade , Óxidos , Dióxido de Silício , Poluentes Químicos da Água/toxicidade
13.
PeerJ ; 9: e11300, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959427

RESUMO

The risk of plastic debris, and specifically micro(nano)plastic particles, to ecosystems remains to be fully characterized. One particular issue that warrants further characterization is the hazards associated with chemical additives within micro(nano)plastic as they are not chemically bound within the polymers and can be persistent and biologically active. Most plastics contain additives and are therefore potential vectors for the introduction of these chemicals into the environment as they leach from plastic, a process that can be accelerated through degradation and weathering processes. There are knowledge gaps on the ecotoxicological effects of plastic additives and how they are released from parent plastic materials as they progressively fragment from the meso to micro and nano scale. This review summarizes the current state of knowledge of the ecotoxicity of plastic additives and identifies research needs to characterize the hazard they present to exposed biota. The potential ecological risk of chemical additives is of international concern so key differences in governance between the European Union and New Zealand to appropriately characterize their risk are highlighted.

14.
Nat Nanotechnol ; 16(6): 644-654, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34017099

RESUMO

Nanotechnology is a key enabling technology with billions of euros in global investment from public funding, which include large collaborative projects that have investigated environmental and health safety aspects of nanomaterials, but the reuse of accumulated data is clearly lagging behind. Here we summarize challenges and provide recommendations for the efficient reuse of nanosafety data, in line with the recently established FAIR (findable, accessible, interoperable and reusable) guiding principles. We describe the FAIR-aligned Nanosafety Data Interface, with an aggregated findability, accessibility and interoperability across physicochemical, bio-nano interaction, human toxicity, omics, ecotoxicological and exposure data. Overall, we illustrate a much-needed path towards standards for the optimized use of existing data, which avoids duplication of efforts, and provides a multitude of options to promote safe and sustainable nanotechnology.

15.
Ecotoxicology ; 30(3): 421-430, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33580466

RESUMO

Plastic particles have been described in aquatic ecosystems worldwide. An increasing number of studies have tried to evaluate the toxic impacts of microplastics (1-5000 µm) but also nanoplastics (<1 µm) in marine and freshwater organisms. However, the wide variety of plastic particles characteristics such as various sizes, shapes, functionalization or types of polymer, makes it difficult to evaluate their impact with regular ecotoxicity testing. In this context, cell culture, mainly used in human toxicology, could be a promising tool to evaluate micro- and nanoplastics toxicity with a wide diversity of conditions allowing to generate a large set of data. This review presents the current research on micro and nanoplastics using cell culture of marine and freshwater organisms, describes the limitations of cell culture tool and defines whether this tool can be considered as a relevant alternative strategy for ecotoxic evaluation of micro and nanoplastics especially for future regulatory needs. Articles using specifically cell culture tool from aquatic organisms such as fish or bivalves were identified. The majority evaluated the toxicity of polystyrene nanobeads on immune parameters, oxidative stress or DNA damage in fish cells. Although most of the papers characterized nanoplastic particles into the cell culture media, the relevance of testing conditions is not always clear. The development of cell culture can offer many opportunities for the evaluation of plastic particles' cellular impacts, but more research is needed to develop relevant culture models, on various aquatic organisms, and with consideration of abiotic parameters especially composition of cell culture media for nanoplastic evaluation.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Técnicas de Cultura de Células , Ecossistema , Humanos , Plásticos/toxicidade , Poliestirenos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
16.
Environ Pollut ; 273: 116449, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33465650

RESUMO

Plastic particles are ubiquitous in marine and freshwater environments. While many studies have focused on the toxicity of microplastics (MPs) and nanoplastics (NPs) in aquatic environments there is no clear conclusion on their environmental risk, which can be attributed to a lack of standardization of protocols for in situ sampling, laboratory experiments and analyzes. There are also far more studies concerning marine environments than fresh or brackish waters despite their role in the transfer of plastics from continents to oceansWe systematically reviewed the literature for studies: (1) using plastics representative of those found in the environment in laboratory experiments, (2) on the contamination of plastic particles in the continuum between fresh and marine waters, focusing in particular on estuaries and (3) on the continuum of contamination of plastic particles between species through trophic transfer in aquatic environments. We found that the exposure of aquatic organisms in the laboratory to plastic particles collected in the environment are very scarce. Moreover, plastic exposures of estuarine species in the laboratory are generally carried out for a single salinity and a single temperature that do not reflect the fluctuating environmental conditions of estuaries. Finally, the trophic transfer of plastic particles is mainly studied in the laboratory through simple food chains which are not representative of the complexity of the trophic networks observed in the aquatic environment. We pointed out that future studies in the laboratory should include both MPs and NPs sampled in the environment and focus on the precise characterization of the composition and surface of these plastics as well as on their absorbed pollutants, additives or biofilms. Moreover, investigations must be continued concerning the toxicity of plastic particles in brackish water environments such as estuaries and the trophic transfer of plastic particles in complex food chains.

17.
Nanotoxicology ; 14(8): 1082-1095, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32810409

RESUMO

Since nanomaterials (NMs) are particulate contaminants, their first contact with organisms is a physical encounter ruled by physic-chemical processes that can determinate the potential NMs accumulation, toxicity, and trophic transfer. Freshwater ecosystems often become a final depository for NMs, so they can get in contact with the biota, especially primary organisms as algae. There are almost none comparative studies of this interaction using various NMs in the same conditions. This work identifies, analyzes, and compares the algae-NMs interaction by flow cytometry after a short-term contact test in which three freshwater algae (Raphidocelis subcapitata, Desmodesmus subspicatus, and Chlorella vulgaris) interact individually with a set of twelve metallic oxide NMs. Dose-response profiles and differences in the algae-NMs interaction were found according to each algae species (C. vulgaris had the most affinity, starting the interaction from 0.5 mg/L and D. subspicatus had the less affinity starting at 5 mg/L). Flow cytometry results were confirmed by optical microscopy. Some NMs characteristics were identified as key-factors that govern the algae-NMs interaction: NMs composition (no interaction for SiO2 NMs), surface electric charge (higher interaction for the positively charged NMs and lower interaction for the negatively charged ones) and crystalline form (for TiO2 NMs). The presented method can be useful for a rapid determination of the interaction between free cells organisms as microalgae and (nano)particulate substances.


Assuntos
Cério/toxicidade , Microalgas/efeitos dos fármacos , Nanoestruturas/toxicidade , Dióxido de Silício/toxicidade , Titânio/toxicidade , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade , Relação Dose-Resposta a Droga , Ecossistema , Citometria de Fluxo , Água Doce/química , Propriedades de Superfície
18.
Environ Sci Pollut Res Int ; 27(4): 3574-3583, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30353435

RESUMO

The presence of plastic debris < 5 mm called microplastics (MPs) which results mainly from macroplastic's fragmentation has been reported in aquatic ecosystems. Several studies have shown that MPs are persistent and their accumulation was observed in various aquatic species. However, the majority of studies focused on marine species, and much less on continental and estuarine biota. The goal of the present study was to investigate the effects of a mixture of two types of MPs (polyethylene and polypropylene), frequently found in natural environments, towards the ragworm Hediste diversicolor to determine their accumulation in organisms exposed through the water phase or sediment. Two concentrations of exposure were selected for medium and heavily contaminated areas reported for water phase (10 and 100 µg/L) and sediment (10 and 50 mg of MPs/kg). To study the potential toxic effect of MPs, immune parameters were selected since they are involved in many defense mechanisms against xenobiotics or infectious agents. An average number of MP items/worm ranging from 0 to 2.5 and from 1 to 36 were identified in animals exposed to the lowest and the highest concentration of MPs through water exposure. In worms exposed through sediment, less than 1 MP/worm was found and a greater number of particles were identified in depurated sediment. For immunotoxic impact, MP exposure induced a decrease in coelomocytes viability, but no alteration of phagocytosis activity, phenoloxydase, and acid phosphatase was measured. This study brings new results on the potential accumulation and immunotoxicity of MPs for the ragworm H. diversicolor who plays a key role in the structure and functioning of estuarine ecosystem.


Assuntos
Exposição Ambiental/efeitos adversos , Poluição Ambiental/análise , Microplásticos/efeitos adversos , Poliquetos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Ecossistema , Poluição Ambiental/efeitos adversos , Plásticos , Poliquetos/fisiologia
19.
Mar Pollut Bull ; 150: 110627, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31655301

RESUMO

The aim of the present study was to evaluate the presence and potential toxic effects of plastic fragments (<400 µm) of polyethylene and polypropylene on the Pacific oyster Crassostrea gigas. Oysters were exposed to environmentally relevant concentrations (0, 0.008, 10, 100 µg of particles/L) during 10 days, followed by a depuration period of 10 days in clean seawater. Effects of microplastics were evaluated on the clearance rate of organisms, tissue alteration, antioxidant defense, immune alteration and DNA damage. Detection and quantification of microplastics in oyster's tissues (digestive gland, gills and other tissues) and biodeposits using infrared microscopy were also conducted. Microplastics were detected in oyster's biodeposits following exposure to all tested concentrations: 0.003, 0.006 and 0.05 particles/mg of biodeposits in oysters exposed to 0.008, 10 and 100 µg of particles/L, respectively. No significant modulation of biological markers was measured in organisms exposed to microplastics in environmentally relevant conditions.


Assuntos
Crassostrea/fisiologia , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Exposição Ambiental , Plásticos
20.
Environ Toxicol Chem ; 38(10): 2314-2325, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31343769

RESUMO

Manufactured nanomaterial production is outpacing the ability to investigate environmental hazard using current regulatory paradigms, causing a backlog of materials requiring testing. To ameliorate this issue, regulatory bodies have proposed integrating safety into the production of novel nanomaterials, allowing for hazards to be identified early in development rather than aftermarket release. In addition, there is a growing interest in short-term ecotoxicity testing to rapidly identify environmental hazards. In this sense, the present study investigated 3 carbon nanofibers (CNFs), created with different production methods, using short-term in vitro and in vivo exposures on fish cell lines, mussel hemocytes, crustacea, and algae. The present study investigated if differences in ecotoxicity hazard between the CNFs could be identified and, if so, which product could be considered less hazardous. A major challenge in assessing the potential hazards posed by manufactured nanomaterials is standardizing the preparation for testing. Standardized operating protocols have been proposed using protein to facilitate the preparation of stable stock suspension, which is not environmentally representative. As such, the study also assessed the potential impacts these standardized protocols (with or without the use of protein) could have on the interpretation of environmental hazard. The results demonstrated that there were clear differences between the 3 CNFs and that the dispersion protocol influenced the interpretation of hazard, demonstrating a need for caution when interpreting ecotoxicity in a regulatory context. Environ Toxicol Chem 2019;38:2314-2325. © 2019 SETAC.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Carbono/toxicidade , Ecotoxicologia , Nanofibras/toxicidade , Animais , Linhagem Celular , Daphnia/efeitos dos fármacos , Peixes/crescimento & desenvolvimento , Hemócitos/efeitos dos fármacos , Mytilus/efeitos dos fármacos , Nanofibras/ultraestrutura , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA