Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Microsc ; 294(3): 397-410, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691400

RESUMO

In the dynamic landscape of scientific research, imaging core facilities are vital hubs propelling collaboration and innovation at the technology development and dissemination frontier. Here, we present a collaborative effort led by Global BioImaging (GBI), introducing international recommendations geared towards elevating the careers of Imaging Scientists in core facilities. Despite the critical role of Imaging Scientists in modern research ecosystems, challenges persist in recognising their value, aligning performance metrics and providing avenues for career progression and job security. The challenges encompass a mismatch between classic academic career paths and service-oriented roles, resulting in a lack of understanding regarding the value and impact of Imaging Scientists and core facilities and how to evaluate them properly. They further include challenges around sustainability, dedicated training opportunities and the recruitment and retention of talent. Structured across these interrelated sections, the recommendations within this publication aim to propose globally applicable solutions to navigate these challenges. These recommendations apply equally to colleagues working in other core facilities and research institutions through which access to technologies is facilitated and supported. This publication emphasises the pivotal role of Imaging Scientists in advancing research programs and presents a blueprint for fostering their career progression within institutions all around the world.


Assuntos
Pesquisadores , Humanos , Mobilidade Ocupacional , Pesquisa Biomédica/métodos , Escolha da Profissão
2.
Cancer Discov ; 14(1): 30-35, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38213296

RESUMO

To enable a collective effort that generates a new level of UNderstanding CANcer (UNCAN.eu) [Cancer Discov (2022) 12 (11): OF1], the European Union supports the creation of a sustainable platform that connects cancer research across Member States. A workshop hosted in Heidelberg gathered European cancer experts to identify ongoing initiatives that may contribute to building this platform and discuss the governance and long-term evolution of a European Federated Cancer Data Hub.


Assuntos
Neoplasias , Humanos , Pesquisa , União Europeia
3.
FEBS Open Bio ; 14(2): 258-275, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37986139

RESUMO

Ceruloplasmin (Cp) is a ferroxidase that plays a role in cellular iron homeostasis and is mainly expressed in the liver and secreted into the blood. Cp is also produced by adipose tissue, which releases it as an adipokine. Although a dysfunctional interaction of iron with the metabolism of lipids has been associated with several metabolic diseases, the role of Cp in adipose tissue metabolism and in the interplay between hepatocytes and adipocytes has been poorly investigated. We previously found that Cp-deficient (CpKO) mice become overweight and demonstrate adipose tissue accumulation together with liver steatosis during aging, suggestive of lipid dysmetabolism. In the present study, we investigated the lipid alterations which occur during aging in adipose tissue and liver of CpKO and wild-type mice both in vivo and ex vivo. During aging of CpKO mice, we observed adipose tissue accumulation and liver lipid deposition, both of which are associated with macrophage infiltration. Liver lipid deposition was characterized by accumulation of triglycerides, fatty acids and ω-3 fatty acids, as well as by a switch from unsaturated to saturated fatty acids, which is characteristic of lipid storage. Liver steatosis was preceded by iron deposition and macrophage infiltration, and this was observed to be already occurring in younger CpKO mice. The accumulation of ω-3 fatty acids, which can only be acquired through diet, was associated with body weight increase in CpKO mice despite food intake being equal to that of wild-type mice, thus underlining the alterations in lipid metabolism/catabolism in Cp-deficient animals.


Assuntos
Ácidos Graxos Ômega-3 , Fígado Gorduroso , Camundongos , Animais , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Imageamento por Ressonância Magnética , Triglicerídeos , Ferro/metabolismo , Ácidos Graxos
4.
Nanoscale Adv ; 5(14): 3749-3760, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37441254

RESUMO

In vivo cell tracking by non-invasive imaging technologies is needed to accelerate the clinical translation of innovative cell-based therapies. In this regard, 19F-MRI has recently gained increased attention for unbiased localization of labeled cells over time. To push forward the use of 19F-MRI for cell tracking, the development of highly performant 19F-probes is required. PLGA-based NPs containing PERFECTA, a multibranched superfluorinated molecule with an optimal MRI profile thanks to its 36 magnetically equivalent fluorine atoms, are promising 19F-MRI probes. In this work we demonstrate the importance of the surface functionalization of these NPs in relation to their interaction with the biological environment, stressing the pivotal role of the formation of the protein corona (PC) in their cellular labelling efficacy. In particular, our studies showed that the formation of PC NPs strongly promotes the cellular internalization of these NPs in microglia cells. We advocate that the formation of PC NPs in the culture medium can be a key element to be used for the optimization of cell labelling with a considerable increase of the detection sensitivity by 19F-MRI.

5.
Neurobiol Dis ; 180: 106083, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931532

RESUMO

Rett syndrome (RTT) is a X-linked neurodevelopmental disorder which represents the leading cause of severe incurable intellectual disability in females worldwide. The vast majority of RTT cases are caused by mutations in the X-linked MECP2 gene, and preclinical studies on RTT largely benefit from the use of mouse models of Mecp2, which present a broad spectrum of symptoms phenocopying those manifested by RTT patients. Neurons represent the core targets of the pathology; however, neuroanatomical abnormalities that regionally characterize the Mecp2 deficient mammalian brain remain ill-defined. Neuroimaging techniques, such as MRI and MRS, represent a key approach for assessing in vivo anatomic and metabolic changes in brain. Being non-invasive, these analyses also permit to investigate how the disease progresses over time through longitudinal studies. To foster the biological comprehension of RTT and identify useful biomarkers, we have performed a thorough in vivo longitudinal study of MRI and MRS in Mecp2 deficient mouse brains. Analyses were performed on both genders of two different mouse models of RTT, using an automatic atlas-based segmentation tool that permitted to obtain a detailed and unbiased description of the whole RTT mouse brain. We found that the most robust alteration of the RTT brain consists in an overall reduction of the brain volume. Accordingly, Mecp2 deficiency generally delays brain growth, eventually leading, in heterozygous older animals, to stagnation and/or contraction. Most but not all brain regions participate in the observed deficiency in brain size; similarly, the volumetric defect progresses diversely in different brain areas also depending on the specific Mecp2 genetic lesion and gender. Interestingly, in some regions volumetric defects anticipate overt symptoms, possibly revealing where the pathology originates and providing a useful biomarker for assessing drug efficacy in pre-clinical studies.


Assuntos
Proteína 2 de Ligação a Metil-CpG , Síndrome de Rett , Feminino , Camundongos , Masculino , Animais , Estudos Longitudinais , Proteína 2 de Ligação a Metil-CpG/metabolismo , Síndrome de Rett/diagnóstico por imagem , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Encéfalo/metabolismo , Mutação , Imageamento por Ressonância Magnética , Mamíferos/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-36780137

RESUMO

Extracellular vesicles (EVs) play a crucial role in cell-to-cell communication and have great potential as efficient delivery vectors. However, a better understanding of EV in vivo behavior is hampered by the limitations of current imaging tools. In addition, chemical labels present the risk of altering the EV membrane features and, thus, in vivo behavior. 19F-MRI is a safe bioimaging technique providing selective images of exogenous probes. Here, we present the first example of fluorinated EVs containing PERFECTA, a branched molecule with 36 magnetically equivalent 19F atoms. A PERFECTA emulsion is given to the cells, and PERFECTA-containing EVs are naturally produced. PERFECTA-EVs maintain the physicochemical features, morphology, and biological fingerprint as native EVs but exhibit an intense 19F-NMR signal and excellent 19F relaxation times. In vivo 19F-MRI and tumor-targeting capabilities of stem cell-derived PERFECTA-EVs are also proved. We propose PERFECTA-EVs as promising biohybrids for imaging biodistribution and delivery of EVs throughout the body.

7.
Colloids Surf B Biointerfaces ; 220: 112932, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272281

RESUMO

Fluorine-19 (19F) Magnetic Resonance Imaging (MRI) is an emergent imaging technique for molecular imaging and cell tracking. Lack of intrinsic 19F signals in tissues allows unambiguous in vivo detection of exogenous fluorinated probes, complementary to the anatomical and multiparametric information obtained by standard 1H-MRI. However, the intrinsic low sensitivity of MRI technique requires the need of designing increasingly effective fluorinated tracers. PERFECTA, with its 36 magnetically equivalent 19F atoms and a designed branched molecular structure, represents an excellent superfluorinated tracer. In this paper, we report the development of PERFECTA loaded PLGA NPs stabilized by different coatings as promising 19F-MRI probes. The results clearly show the optimal cellular uptake of the produced colloidally stable PERFECTA loaded PLGA NPs without impact on cells viability. Importantly, NPs stabilization with the anionic surfactant sodium cholate (NaC) clearly enhances NPs internalization within cells with respect to PVA-coated NPs. Moreover, the optimized NPs are characterized by shorter T1 relaxation times with respect to other PERFECTA formulations that would allow the increase of 19F-MRI sensitivity with fast imaging acquisitions.


Assuntos
Nanopartículas , Nanopartículas/química , Imageamento por Ressonância Magnética , Rastreamento de Células , Sobrevivência Celular , Estrutura Molecular
8.
Sci Transl Med ; 14(653): eabl4106, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35857642

RESUMO

Glioblastoma multiforme (GBM) is the most common and lethal brain tumor characterized by a strongly immunosuppressive tumor microenvironment (TME) that represents a barrier also for the development of effective immunotherapies. The possibility to revert this hostile TME by immunoactivating cytokines is hampered by the severe toxicity associated with their systemic administration. Here, we exploited a lentiviral vector-based platform to engineer hematopoietic stem cells ex vivo with the aim of releasing, via their tumor-infiltrating monocyte/macrophage progeny, interferon-α (IFN-α) or interleukin-12 (IL-12) at the tumor site with spatial and temporal selectivity. Taking advantage of a syngeneic GBM mouse model, we showed that inducible release of IFN-α within the TME achieved robust tumor inhibition up to eradication and outperformed systemic treatment with the recombinant protein in terms of efficacy, tolerability, and specificity. Single-cell RNA sequencing of the tumor immune infiltrate revealed reprogramming of the immune microenvironment toward a proinflammatory and antitumoral state associated with loss of a macrophage subpopulation shown to be associated with poor prognosis in human GBM. The spatial and temporal control of IL-12 release was critical to overcome an otherwise lethal hematopoietic toxicity while allowing to fully exploit its antitumor activity. Overall, our findings demonstrate a potential therapeutic approach for GBM and set the bases for a recently launched first-in-human clinical trial in patients with GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Citocinas , Modelos Animais de Doenças , Glioblastoma/tratamento farmacológico , Interferon-alfa , Interleucina-12/uso terapêutico , Camundongos , Microambiente Tumoral
9.
J Neurosci Res ; 100(3): 855-868, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35043454

RESUMO

Female Dark Agouti rats were immunized with increasing doses of myelin oligodendrocyte glycoprotein (MOG) to develop experimental autoimmune encephalomyelitis (EAE), a preclinical model of multiple sclerosis. Typical EAE motor impairments were assessed daily and noninvasive visual evoked potentials (VEPs) were recorded at baseline and 5 weeks after immunization, with final histopathology of optic nerves (ONs). Immunized rats exhibited a relapsing-remitting clinical course. Both VEP and histological abnormalities were detected in a MOG dose-dependent gradient. Increasing MOG dosage augmented visual function impairment in EAE, which could be monitored with VEP recording to assess demyelination and axonal loss along ONs.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Encefalomielite Autoimune Experimental/patologia , Potenciais Evocados Visuais , Feminino , Esclerose Múltipla/patologia , Glicoproteína Associada a Mielina , Glicoproteína Mielina-Oligodendrócito/toxicidade , Nervo Óptico/patologia , Ratos
10.
J Clin Invest ; 132(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34874913

RESUMO

Oligodendrocytes are the primary target of demyelinating disorders, and progressive neurodegenerative changes may evolve in the CNS. DNA damage and oxidative stress are considered key pathogenic events, but the underlying molecular mechanisms remain unclear. Moreover, animal models do not fully recapitulate human diseases, complicating the path to effective treatments. Here we report that mice with cell-autonomous deletion of the nuclear COP9 signalosome component CSN5 (JAB1) in oligodendrocytes develop DNA damage and defective DNA repair in myelinating glial cells. Interestingly, oligodendrocytes lacking JAB1 expression underwent a senescence-like phenotype that fostered chronic inflammation and oxidative stress. These mutants developed progressive CNS demyelination, microglia inflammation, and neurodegeneration, with severe motor deficits and premature death. Notably, blocking microglia inflammation did not prevent neurodegeneration, whereas the deletion of p21CIP1 but not p16INK4a pathway ameliorated the disease. We suggest that senescence is key to sustaining neurodegeneration in demyelinating disorders and may be considered a potential therapeutic target.


Assuntos
Envelhecimento/metabolismo , Complexo do Signalossomo COP9/deficiência , Deleção de Genes , Doenças Neurodegenerativas/metabolismo , Oligodendroglia/metabolismo , Peptídeo Hidrolases/deficiência , Envelhecimento/genética , Envelhecimento/patologia , Animais , Complexo do Signalossomo COP9/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Oligodendroglia/patologia , Peptídeo Hidrolases/metabolismo
11.
Invest Ophthalmol Vis Sci ; 62(13): 21, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34698773

RESUMO

Purpose: To test whether an acute corneal injury activates a proinflammatory reflex, involving corneal sensory nerves expressing substance P (SP), the hypothalamus, and the sympathetic nervous system. Methods: C57BL6/N (wild-type [WT]) and SP-depleted B6.Cg-Tac1tm1Bbm/J (TAC1-KO) mice underwent bilateral corneal alkali burn. One group of WT mice received oxybuprocaine before alkali burn. One hour later, hypothalamic neuronal activity was assessed in vivo by magnetic resonance imaging and ex vivo by cFOS staining. Some animals were followed up for 14 days to evaluate corneal transparency and inflammation. Tyrosine hydroxylase (TH), neurokinin 1 receptor (NK1R), and neuronal nitric oxide synthase (nNOS) expression was assessed in brain sections. Sympathetic neuron activation was evaluated in the superior cervical ganglion (SCG). CD45+ leukocytes were quantified in whole-mounted corneas. Noradrenaline (NA) was evaluated in the cornea and bone marrow. Results: Alkali burn acutely induced neuronal activation in the trigeminal ganglion, paraventricular hypothalamus, and lateral hypothalamic area (PVH and LHA), which was significantly lower in TAC1-KO mice (P < 0.05). Oxybuprocaine application similarly reduced neuronal activation (P < 0.05). TAC1-KO mice showed a reduced number of cFOS+/NK1R+/TH+ presympathetic neurons (P < 0.05) paralleled by higher nNOS expression (P < 0.05) in both PVH and LHA. A decrease in activated sympathetic neurons in the SCG and NA levels in both cornea/bone marrow and reduced corneal leukocyte infiltration (P < 0.05) in TAC1-KO mice were found. Finally, 14 days after injury, TAC1-KO mice showed reduced corneal opacity and inflammation (P < 0.05). Conclusions: Our findings suggest that stimulation of corneal sensory nerves containing SP activates presympathetic neurons located in the PVH and LHA, leading to sympathetic activation, peripheral release of NA, and corneal inflammation.


Assuntos
Piscadela/fisiologia , Queimaduras Químicas/complicações , Córnea/inervação , Lesões da Córnea/complicações , Ceratite/fisiopatologia , Gânglio Trigeminal/fisiopatologia , Animais , Queimaduras Químicas/patologia , Queimaduras Químicas/fisiopatologia , Córnea/diagnóstico por imagem , Córnea/fisiopatologia , Lesões da Córnea/patologia , Lesões da Córnea/fisiopatologia , Modelos Animais de Doenças , Ceratite/diagnóstico , Ceratite/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
J Am Chem Soc ; 143(31): 12253-12260, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34320323

RESUMO

Molecular imaging techniques are essential tools for better investigating biological processes and detecting disease biomarkers with improvement of both diagnosis and therapy monitoring. Often, a single imaging technique is not sufficient to obtain comprehensive information at different levels. Multimodal diagnostic probes are key tools to enable imaging across multiple scales. The direct registration of in vivo imaging markers with ex vivo imaging at the cellular level with a single probe is still challenging. Fluorinated (19F) probes have been increasingly showing promising potentialities for in vivo cell tracking by 19F-MRI. Here we present the unique features of a bioorthogonal 19F-probe that enables direct signal correlation of MRI with Raman imaging. In particular, we reveal the ability of PERFECTA, a superfluorinated molecule, to exhibit a remarkable intense Raman signal distinct from cell and tissue fingerprints. Therefore, PERFECTA combines in a single molecule excellent characteristics for both macroscopic in vivo 19F-MRI, across the whole body, and microscopic imaging at tissue and cellular levels by Raman imaging.


Assuntos
Hidrocarbonetos Fluorados/química , Imageamento por Ressonância Magnética , Imagem Molecular , Sondas Moleculares/química , Imagem Corporal Total , Animais , Flúor , Camundongos , Estrutura Molecular , Análise Espectral Raman
13.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925229

RESUMO

Obesity is a chronic, complex pathology associated with a risk of developing secondary pathologies, including cardiovascular diseases, cancer, type 2 diabetes (T2DM) and musculoskeletal disorders. Since skeletal muscle accounts for more than 70% of total glucose disposal, metabolic alterations are strictly associated with the onset of insulin resistance and T2DM. The present study relies on the proteomic analysis of gastrocnemius muscle from 15 male and 15 female C56BL/J mice fed for 14 weeks with standard, 45% or 60% high-fat diets (HFD) adopting a label-free LC-MS/MS approach followed by bioinformatic pathway analysis. Results indicate changes in males due to HFD, with increased muscular stiffness (Col1a1, Col1a2, Actb), fiber-type switch from slow/oxidative to fast/glycolytic (decreased Myh7, Myl2, Myl3 and increased Myh2, Mylpf, Mybpc2, Myl1), increased oxidative stress and mitochondrial dysfunction (decreased respiratory chain complex I and V and increased complex III subunits). At variance, females show few alterations and activation of compensatory mechanisms to counteract the increase of fatty acids. Bioinformatics analysis allows identifying upstream molecules involved in regulating pathways identified at variance in our analysis (Ppargc1a, Pparg, Cpt1b, Clpp, Tp53, Kdm5a, Hif1a). These findings underline the presence of a gender-specific response to be considered when approaching obesity and related comorbidities.


Assuntos
Músculo Esquelético/metabolismo , Obesidade/metabolismo , Animais , Cromatografia Líquida/métodos , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dieta Hiperlipídica/métodos , Modelos Animais de Doenças , Feminino , Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/fisiologia , Obesidade/fisiopatologia , Estresse Oxidativo , Proteômica/métodos , Sarcopenia/metabolismo , Fatores Sexuais , Espectrometria de Massas em Tandem/métodos
14.
J Neurochem ; 157(4): 1253-1269, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33448385

RESUMO

Mutations in the X-linked CDKL5 gene cause CDKL5 deficiency disorder (CDD), a severe neurodevelopmental condition mainly characterized by infantile epileptic encephalopathy, intellectual disability, and autistic features. The molecular mechanisms underlying the clinical symptoms remain largely unknown and the identification of reliable biomarkers in animal models will certainly contribute to increase our comprehension of CDD as well as to assess the efficacy of therapeutic strategies. Here, we used different Magnetic Resonance (MR) methods to disclose structural, functional, or metabolic signatures of Cdkl5 deficiency in the brain of adult mice. We found that loss of Cdkl5 does not cause cerebral atrophy but affects distinct brain areas, particularly the hippocampus. By in vivo proton-MR spectroscopy (MRS), we revealed in the Cdkl5 null brain a metabolic dysregulation indicative of mitochondrial dysfunctions. Accordingly, we unveiled a significant reduction in ATP levels and a decrease in the expression of complex IV of mitochondrial electron transport chain. Conversely, the number of mitochondria appeared preserved. Importantly, we reported a significant defect in the activation of one of the major regulators of cellular energy balance, the adenosine monophosphate-activated protein kinase (AMPK), that might contribute to the observed metabolic impairment and become an interesting therapeutic target for future preclinical trials. In conclusion, MRS revealed in the Cdkl5 null brain the presence of a metabolic dysregulation suggestive of a mitochondrial dysfunction that permitted to foster our comprehension of Cdkl5 deficiency and brought our interest towards targeting mitochondria as therapeutic strategy for CDD.


Assuntos
Encéfalo/metabolismo , Síndromes Epilépticas , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/genética , Espasmos Infantis , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Síndromes Epilépticas/metabolismo , Síndromes Epilépticas/patologia , Espectroscopia de Ressonância Magnética , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/patologia , Espasmos Infantis/metabolismo , Espasmos Infantis/patologia
15.
Chemistry ; 26(44): 10057-10063, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32515857

RESUMO

In the continuous search for multimodal systems with combined diagnostic and therapeutic functions, several efforts have been made to develop multifunctional drug delivery systems. In this work, through a covalent approach, a new class of fluorinated poly(lactic-co-glycolic acid) co-polymers (F-PLGA) were designed that contain an increasing number of magnetically equivalent fluorine atoms. In particular, two novel compounds, F3 -PLGA and F9 -PLGA, were synthesized and their chemical structure and thermal stability were analyzed by solution NMR, DSC, and TGA. The obtained F-PLGA compounds were proven to form in aqueous solution colloidal stable nanoparticles (NPs) displaying a strong 19 F NMR signal. The fluorinated NPs also showed an enhanced ability to load hydrophobic drugs containing fluorine atoms compared to analogous pristine PLGA NPs. Preliminary in vitro studies showed high cell viability and the NP ability to intracellularly deliver and release a functioning drug.


Assuntos
Portadores de Fármacos/química , Flúor/análise , Flúor/química , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Linhagem Celular , Humanos , Espectroscopia de Ressonância Magnética
16.
Brain Pathol ; 30(1): 137-150, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31267597

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is the primary disease model of multiple sclerosis (MS), one of the most diffused neurological diseases characterized by fatigue, muscle weakness, vision loss, anxiety and depression. EAE can be induced through injection of myelin peptides to susceptible mouse or rat strains. In particular, EAE elicited by the autoimmune reaction against myelin oligodendrocyte glycoprotein (MOG) presents the common features of human MS: inflammation, demyelination and axonal loss. Optic neuritis affects visual pathways in both MS and in several EAE models. Neurophysiological evaluation through visual evoked potential (VEP) recording is useful to check visual pathway dysfunctions and to test the efficacy of innovative treatments against optic neuritis. For this purpose, we investigate the extent of VEP abnormalities in the dark agouti (DA) rat immunized with MOG, which develops a relapsing-remitting disease course. Together with the detection of motor signs, we acquired VEPs during both early and late stages of EAE, taking advantage of a non-invasive recording procedure that allows long follow-up studies. The validation of VEP outcomes was determined by comparison with ON histopathology, aimed at revealing inflammation, demyelination and nerve fiber loss. Our results indicate that the first VEP latency delay in MOG-EAE DA rats appeared before motor deficits and were mainly related to an inflammatory state. Subsequent VEP delays, detected during relapsing EAE phases, were associated with a combination of inflammation, demyelination and axonal loss. Moreover, DA rats with atypical EAE clinical course tested at extremely late time points, manifested abnormal VEPs although motor signs were mild. Overall, our data demonstrated that non-invasive VEPs are a powerful tool to detect visual involvement at different stages of EAE, prompting their validation as biomarkers to test novel treatments against MS optic neuritis.


Assuntos
Encefalomielite Autoimune Experimental/fisiopatologia , Potenciais Evocados Visuais/fisiologia , Nervo Óptico/metabolismo , Animais , Feminino , Inflamação/patologia , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Glicoproteína Mielina-Oligodendrócito/metabolismo , Ratos , Ratos Endogâmicos , Medula Espinal/patologia
17.
Acta Neuropathol ; 138(6): 987-1012, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31363836

RESUMO

Microglia are highly plastic immune cells which exist in a continuum of activation states. By shaping the function of oligodendrocyte precursor cells (OPCs), the brain cells which differentiate to myelin-forming cells, microglia participate in both myelin injury and remyelination during multiple sclerosis. However, the mode(s) of action of microglia in supporting or inhibiting myelin repair is still largely unclear. Here, we analysed the effects of extracellular vesicles (EVs) produced in vitro by either pro-inflammatory or pro-regenerative microglia on OPCs at demyelinated lesions caused by lysolecithin injection in the mouse corpus callosum. Immunolabelling for myelin proteins and electron microscopy showed that EVs released by pro-inflammatory microglia blocked remyelination, whereas EVs produced by microglia co-cultured with immunosuppressive mesenchymal stem cells promoted OPC recruitment and myelin repair. The molecular mechanisms responsible for the harmful and beneficial EV actions were dissected in primary OPC cultures. By exposing OPCs, cultured either alone or with astrocytes, to inflammatory EVs, we observed a blockade of OPC maturation only in the presence of astrocytes, implicating these cells in remyelination failure. Biochemical fractionation revealed that astrocytes may be converted into harmful cells by the inflammatory EV cargo, as indicated by immunohistochemical and qPCR analyses, whereas surface lipid components of EVs promote OPC migration and/or differentiation, linking EV lipids to myelin repair. Although the mechanisms through which the lipid species enhance OPC maturation still remain to be fully defined, we provide the first demonstration that vesicular sphingosine 1 phosphate stimulates OPC migration, the first fundamental step in myelin repair. From this study, microglial EVs emerge as multimodal and multitarget signalling mediators able to influence both OPCs and astrocytes around myelin lesions, which may be exploited to develop novel approaches for myelin repair not only in multiple sclerosis, but also in neurological and neuropsychiatric diseases characterized by demyelination.


Assuntos
Astrócitos/fisiologia , Doenças Desmielinizantes/fisiopatologia , Vesículas Extracelulares/fisiologia , Microglia/fisiologia , Bainha de Mielina/fisiologia , Remielinização/fisiologia , Animais , Astrócitos/patologia , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Técnicas de Cocultura , Corpo Caloso/patologia , Corpo Caloso/fisiopatologia , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Vesículas Extracelulares/patologia , Inflamação/patologia , Inflamação/fisiopatologia , Lisofosfatidilcolinas , Masculino , Células-Tronco Mesenquimais/fisiologia , Camundongos Endogâmicos C57BL , Microglia/patologia , Bainha de Mielina/patologia , Neuroproteção/fisiologia , Células Precursoras de Oligodendrócitos/patologia , Células Precursoras de Oligodendrócitos/fisiologia , Ratos Sprague-Dawley
18.
J Neurosci ; 39(28): 5481-5492, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31138656

RESUMO

Myelin loss occurring in demyelinating diseases, including multiple sclerosis, is the leading cause of long-lasting neurological disability in adults. While endogenous remyelination, driven by resident oligodendrocyte precursor cells (OPCs), might partially compensate myelin loss in the early phases of demyelinating disorders, this spontaneous reparative potential fails at later stages. To investigate the cellular mechanisms sustaining endogenous remyelination in demyelinating disorders, we focused our attention on endogenous neural precursor cells (eNPCs) located within the subventricular zone (SVZ) since this latter area is considered one of the primary sources of new OPCs in the adult forebrain. First, we fate mapped SVZ-eNPCs in cuprizone-induced demyelination and found that SVZ endogenous neural stem/precursor cells are recruited during the remyelination phase to the corpus callosum (CC) and are capable of forming new oligodendrocytes. When we ablated SVZ-derived eNPCs during cuprizone-induced demyelination in female mice, the animals displayed reduced numbers of oligodendrocytes within the lesioned CC. Although this reduction in oligodendrocytes did not impact the ensuing remyelination, eNPC-ablated mice experienced increased axonal loss. Our results indicate that, in toxic models of demyelination, SVZ-derived eNPCs contribute to support axonal survival.SIGNIFICANCE STATEMENT One of the significant challenges in MS research is to understand the detrimental mechanisms leading to the failure of CNS tissue regeneration during disease progression. One possible explanation is the inability of recruited oligodendrocyte precursor cells (OPCs) to complete remyelination and to sustain axonal survival. The contribution of endogenous neural precursor cells (eNPCs) located in the subventricular zone (SVZ) to generate new OPCs in the lesion site has been debated. Using transgenic mice to fate map and to selectively kill SVZ-derived eNPCs in the cuprizone demyelination model, we observed migration of SVZ-eNPCs after injury and their contribution to oligodendrogenesis and axonal survival. We found that eNPCs are dispensable for remyelination but protect partially from increased axonal loss.


Assuntos
Corpo Caloso/metabolismo , Doenças Desmielinizantes/metabolismo , Ventrículos Laterais/citologia , Bainha de Mielina/metabolismo , Células-Tronco Neurais/citologia , Animais , Movimento Celular , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/patologia , Cuprizona/toxicidade , Doenças Desmielinizantes/etiologia , Doenças Desmielinizantes/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Oligodendroglia/citologia , Oligodendroglia/metabolismo
19.
Radiology ; 291(2): 351-357, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30888930

RESUMO

Background MRI with fluorine 19 (19F) probes has shown an ability to track immune cell activity with a specific, stable, and quantitative signal. In addition, the chemical shift differences of selected 19F probes make dual-probe imaging possible. To improve 19F MRI sensitivity for dual-probe imaging, optimal fluorine probes are needed. Purpose To develop multispectral 19F MRI to image immune cell activity in vivo using 19F nanoparticles of two distinct fluorocarbons. Materials and Methods Both 19F nanoparticles formulated with two fluorocarbons with distinct resonance frequencies and a high fluorine payload were characterized in terms of size, stability, MR profile, and relaxation times at 7 T. 19F MRI sensitivity was tested on labeling cells both in vitro and in vivo in C57BL/6 mice after conditional ablation of myeloid cells through the inhibition of colony-stimulating factor-1 receptor (CSF1Ri) to monitor the change of immune cells phagocytosis. Fluorine MRI data were acquired at the resonance frequency of each fluorocarbon by using a three-dimensional fast spin-echo sequence. Fluorescent dyes were also inserted into 19F nanoparticles to allow flow-cytometric and confocal microscopy analysis of labeled cells. Fluorine signal-to-noise ratio (SNR) was compared by using two-way repeated measures analysis of variance with Bonferroni post hoc correction. Results Fluorine MRI demonstrated high sensitivity and high specificity in the imaging of mononuclear cells both in vitro and in vivo. In combination with proton MRI, a map of 19F nuclei from each fluorocarbon was obtained without overlaps or artifacts. In vitro cell viability was unchanged, and 8000 cells with a high SNR (>8) were detected. In vivo high fluorine signal was observed in the bone marrow (SNR > 15) immediately after CSF1Ri treatment interruption, which correlated with high uptake by neutrophils and monocytes at flow cytometry. Conclusion By assessing in vivo MRI of mononuclear cell phagocytic ability with 19F nanoparticles, MRI with dual 19F probes can effectively track immune cell activity in combination with current MRI protocols. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Bulte in this issue.


Assuntos
Rastreamento de Células/métodos , Corantes Fluorescentes/uso terapêutico , Imagem por Ressonância Magnética de Flúor-19/métodos , Leucócitos Mononucleares , Animais , Corantes Fluorescentes/farmacocinética , Leucócitos Mononucleares/química , Leucócitos Mononucleares/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/uso terapêutico
20.
Am J Pathol ; 189(2): 354-369, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30448410

RESUMO

In muscular dystrophies, muscle membrane fragility results in a tissue-specific increase of danger-associated molecular pattern molecules (DAMPs) and infiltration of inflammatory cells. The DAMP extracellular ATP (eATP) released by dying myofibers steadily activates muscle and immune purinergic receptors exerting dual negative effects: a direct damage linked to altered intracellular calcium homeostasis in muscle cells and an indirect toxicity through the triggering of the immune response and inhibition of regulatory T cells. Accordingly, pharmacologic and genetic inhibition of eATP signaling improves the phenotype in models of chronic inflammatory diseases. In α-sarcoglycanopathy, eATP effects may be further amplified because α-sarcoglycan extracellular domain binds eATP and displays an ecto-ATPase activity, thus controlling eATP concentration at the cell surface and attenuating the magnitude and/or the duration of eATP-induced signals. Herein, we show that in vivo blockade of the eATP/P2X purinergic pathway by a broad-spectrum P2X receptor-antagonist delayed the progression of the dystrophic phenotype in α-sarcoglycan-null mice. eATP blockade dampened the muscular inflammatory response and enhanced the recruitment of forkhead box protein P3-positive immunosuppressive regulatory CD4+ T cells. The improvement of the inflammatory features was associated with increased strength, reduced necrosis, and limited expression of profibrotic factors, suggesting that pharmacologic purinergic antagonism, altering the innate and adaptive immune component in muscle infiltrates, might provide a therapeutic approach to slow disease progression in α-sarcoglycanopathy.


Assuntos
Trifosfato de Adenosina/imunologia , Distrofia Muscular Animal , Miofibrilas , Sarcoglicanas/deficiência , Linfócitos T Reguladores , Trifosfato de Adenosina/genética , Animais , Cálcio/imunologia , Doença Crônica , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Knockout , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/imunologia , Distrofia Muscular Animal/patologia , Miofibrilas/imunologia , Miofibrilas/patologia , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2X/imunologia , Sarcoglicanas/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA