Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 80(Pt 3): 174-180, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376453

RESUMO

Electron cryo-microscopy image-processing workflows are typically composed of elements that may, broadly speaking, be categorized as high-throughput workloads which transition to high-performance workloads as preprocessed data are aggregated. The high-throughput elements are of particular importance in the context of live processing, where an optimal response is highly coupled to the temporal profile of the data collection. In other words, each movie should be processed as quickly as possible at the earliest opportunity. The high level of disconnected parallelization in the high-throughput problem directly allows a completely scalable solution across a distributed computer system, with the only technical obstacle being an efficient and reliable implementation. The cloud computing frameworks primarily developed for the deployment of high-availability web applications provide an environment with a number of appealing features for such high-throughput processing tasks. Here, an implementation of an early-stage processing pipeline for electron cryotomography experiments using a service-based architecture deployed on a Kubernetes cluster is discussed in order to demonstrate the benefits of this approach and how it may be extended to scenarios of considerably increased complexity.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Processamento de Imagem Assistida por Computador/métodos , Microscopia Crioeletrônica/métodos , Fluxo de Trabalho , Computação em Nuvem
2.
Cell Host Microbe ; 31(4): 604-615.e4, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36996819

RESUMO

Rotavirus assembly is a complex process that involves the stepwise acquisition of protein layers in distinct intracellular locations to form the fully assembled particle. Understanding and visualization of the assembly process has been hampered by the inaccessibility of unstable intermediates. We characterize the assembly pathway of group A rotaviruses observed in situ within cryo-preserved infected cells through the use of cryoelectron tomography of cellular lamellae. Our findings demonstrate that the viral polymerase VP1 recruits viral genomes during particle assembly, as revealed by infecting with a conditionally lethal mutant. Additionally, pharmacological inhibition to arrest the transiently enveloped stage uncovered a unique conformation of the VP4 spike. Subtomogram averaging provided atomic models of four intermediate states, including a pre-packaging single-layered intermediate, the double-layered particle, the transiently enveloped double-layered particle, and the fully assembled triple-layered virus particle. In summary, these complementary approaches enable us to elucidate the discrete steps involved in forming an intracellular rotavirus particle.


Assuntos
Rotavirus , Rotavirus/fisiologia , Tomografia , Montagem de Vírus
3.
Structure ; 30(4): 522-531.e4, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35150604

RESUMO

Despite the abundance of available software tools, optimal particle selection is still a vital issue in single-particle cryoelectron microscopy (cryo-EM). Regardless of the method used, most pickers struggle when ice thickness varies on a micrograph. IceBreaker allows users to estimate the relative ice gradient and flatten it by equalizing the local contrast. It allows the differentiation of particles from the background and improves overall particle picking performance. Furthermore, we introduce an additional parameter corresponding to local ice thickness for each particle. Particles with a defined ice thickness can be grouped and filtered based on this parameter during processing. These functionalities are especially valuable for on-the-fly processing to automatically pick as many particles as possible from each micrograph and to select optimal regions for data collection. Finally, estimated ice gradient distributions can be stored separately and used to inspect the quality of prepared samples.


Assuntos
Gelo , Processamento de Imagem Assistida por Computador , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagem Individual de Molécula , Software
4.
Sci Adv ; 7(47): eabj5715, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34797722

RESUMO

The viral capsid plays essential roles in HIV replication and is a major platform engaging host factors. To overcome challenges in study native capsid structure, we used the perfringolysin O to perforate the membrane of HIV-1 particles, thus allowing host proteins and small molecules to access the native capsid while improving cryo­electron microscopy image quality. Using cryo­electron tomography and subtomogram averaging, we determined the structures of native capsomers in the presence and absence of inositol hexakisphosphate (IP6) and cyclophilin A and constructed an all-atom model of a complete HIV-1 capsid. Our structures reveal two IP6 binding sites and modes of cyclophilin A interactions. Free energy calculations substantiate the two binding sites at R18 and K25 and further show a prohibitive energy barrier for IP6 to pass through the pentamer. Our results demonstrate that perfringolysin O perforation is a valuable tool for structural analyses of enveloped virus capsids and interactions with host cell factors.

5.
Nat Struct Mol Biol ; 27(1): 71-77, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31907455

RESUMO

The RecBCD complex plays key roles in phage DNA degradation, CRISPR array acquisition (adaptation) and host DNA repair. The switch between these roles is regulated by a DNA sequence called Chi. We report cryo-EM structures of the Escherichia coli RecBCD complex bound to several different DNA forks containing a Chi sequence, including one in which Chi is recognized and others in which it is not. The Chi-recognized structure shows conformational changes in regions of the protein that contact Chi and reveals a tortuous path taken by the DNA. Sequence specificity arises from interactions with both the RecC subunit and the sequence itself. These structures provide molecular details for how Chi is recognized and insights into the changes that occur in response to Chi binding that switch RecBCD from bacteriophage destruction and CRISPR spacer acquisition to constructive host DNA repair.


Assuntos
Reparo do DNA , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Exodesoxirribonuclease V/metabolismo , Bacteriófago lambda/fisiologia , Sequência de Bases , Sítios de Ligação , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Microscopia Crioeletrônica , DNA Bacteriano/química , DNA Bacteriano/ultraestrutura , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Exodesoxirribonuclease V/química , Exodesoxirribonuclease V/ultraestrutura , Simulação de Acoplamento Molecular , Conformação Proteica
7.
Science ; 362(6411)2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30309918

RESUMO

The yeast SWR1 complex exchanges histone H2A in nucleosomes with Htz1 (H2A.Z in humans). The cryo-electron microscopy structure of the SWR1 complex bound to a nucleosome at 3.6-angstrom resolution reveals details of the intricate interactions between components of the SWR1 complex and its nucleosome substrate. Interactions between the Swr1 motor domains and the DNA wrap at superhelical location 2 distort the DNA, causing a bulge with concomitant translocation of the DNA by one base pair, coupled to conformational changes of the histone core. Furthermore, partial unwrapping of the DNA from the histone core takes place upon binding of nucleosomes to SWR1 complex. The unwrapping, as monitored by single-molecule data, is stabilized and has its dynamics altered by adenosine triphosphate binding but does not require hydrolysis.


Assuntos
Adenosina Trifosfatases/química , Nucleossomos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/ultraestrutura , Trifosfato de Adenosina/metabolismo , Montagem e Desmontagem da Cromatina , Microscopia Crioeletrônica , Nucleossomos/ultraestrutura , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/ultraestrutura
8.
Nucleic Acids Res ; 45(12): 7249-7260, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28499038

RESUMO

We have prepared recombinant fourteen subunit yeast SWR1 complex from insect cells using a modified MultiBac system. The 1.07 MDa recombinant protein complex has histone-exchange activity. Full exchange activity is realized with a single SWR1 complex bound to a nucleosome. We also prepared mutant complexes that lack a variety of subunits or combinations of subunits and these start to reveal roles for some of these subunits as well as indicating interactions between them in the full complex. Complexes containing a series of N-terminally and C-terminally truncated Swr1 subunits reveal further details about interactions between subunits as well as their binding sites on the Swr1 subunit. Finally, we present electron microscopy studies revealing the dynamic nature of the complex and a 21 Å resolution reconstruction of the intact complex provides details not apparent in previously reported structures, including a large central cavity of sufficient size to accommodate a nucleosome.


Assuntos
Adenosina Trifosfatases/química , Histonas/genética , Nucleossomos/química , Subunidades Proteicas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Clonagem Molecular , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , Expressão Gênica , Histonas/metabolismo , Insetos , Lepidópteros , Modelos Moleculares , Nucleossomos/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Elife ; 52016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28009252

RESUMO

Our previous paper (Wilkinson et al, 2016) used high-resolution cryo-electron microscopy to solve the structure of the Escherichia coli RecBCD complex, which acts in both the repair of double-stranded DNA breaks and the degradation of bacteriophage DNA. To counteract the latter activity, bacteriophage λ encodes a small protein inhibitor called Gam that binds to RecBCD and inactivates the complex. Here, we show that Gam inhibits RecBCD by competing at the DNA-binding site. The interaction surface is extensive and involves molecular mimicry of the DNA substrate. We also show that expression of Gam in E. coli or Klebsiella pneumoniae increases sensitivity to fluoroquinolones; antibacterials that kill cells by inhibiting topoisomerases and inducing double-stranded DNA breaks. Furthermore, fluoroquinolone-resistance in K. pneumoniae clinical isolates is reversed by expression of Gam. Together, our data explain the synthetic lethality observed between topoisomerase-induced DNA breaks and the RecBCD gene products, suggesting a new co-antibacterial strategy.


Assuntos
Antibacterianos/farmacologia , Proteínas de Ligação a DNA/metabolismo , Sinergismo Farmacológico , Escherichia coli/enzimologia , Exodesoxirribonuclease V/antagonistas & inibidores , Klebsiella pneumoniae/enzimologia , Quinolonas/farmacologia , Proteínas Virais/metabolismo , Bacteriófago lambda/enzimologia , Proteínas de Ligação a DNA/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Proteínas Virais/genética
10.
Elife ; 52016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27644322

RESUMO

In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is catalysed by AddAB, AdnAB or RecBCD-type helicase-nucleases. These enzyme complexes are highly processive, duplex unwinding and degrading machines that require tight regulation. Here, we report the structure of E.coli RecBCD, determined by cryoEM at 3.8 Å resolution, with a DNA substrate that reveals how the nuclease activity of the complex is activated once unwinding progresses. Extension of the 5'-tail of the unwound duplex induces a large conformational change in the RecD subunit, that is transferred through the RecC subunit to activate the nuclease domain of the RecB subunit. The process involves a SH3 domain that binds to a region of the RecB subunit in a binding mode that is distinct from others observed previously in SH3 domains and, to our knowledge, this is the first example of peptide-binding of an SH3 domain in a bacterial system.


Assuntos
DNA/química , DNA/metabolismo , Escherichia coli/enzimologia , Exodesoxirribonuclease V/química , Exodesoxirribonuclease V/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Proteica
11.
Nucleic Acids Res ; 43(17): 8551-63, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26240379

RESUMO

Hexameric helicases are processive DNA unwinding machines but how they engage with a replication fork during unwinding is unknown. Using electron microscopy and single particle analysis we determined structures of the intact hexameric helicase E1 from papillomavirus and two complexes of E1 bound to a DNA replication fork end-labelled with protein tags. By labelling a DNA replication fork with streptavidin (dsDNA end) and Fab (5' ssDNA) we located the positions of these labels on the helicase surface, showing that at least 10 bp of dsDNA enter the E1 helicase via a side tunnel. In the currently accepted 'steric exclusion' model for dsDNA unwinding, the active 3' ssDNA strand is pulled through a central tunnel of the helicase motor domain as the dsDNA strands are wedged apart outside the protein assembly. Our structural observations together with nuclease footprinting assays indicate otherwise: strand separation is taking place inside E1 in a chamber above the helicase domain and the 5' passive ssDNA strands exits the assembly through a separate tunnel opposite to the dsDNA entry point. Our data therefore suggest an alternative to the current general model for DNA unwinding by hexameric helicases.


Assuntos
DNA Helicases/química , DNA/química , DNA/metabolismo , DNA Helicases/metabolismo , DNA Helicases/ultraestrutura , Replicação do DNA , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/ultraestrutura , Modelos Moleculares , Papillomaviridae/enzimologia , Estrutura Terciária de Proteína
12.
Proc Natl Acad Sci U S A ; 112(22): 7009-14, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25991862

RESUMO

Many icosahedral viruses use a specialized portal vertex to control genome encapsidation and release from the viral capsid. In tailed bacteriophages, the portal system is connected to a tail structure that provides the pipeline for genome delivery to the host cell. We report the first, to our knowledge, subnanometer structures of the complete portal-phage tail interface that mimic the states before and after DNA release during phage infection. They uncover structural rearrangements associated with intimate protein-DNA interactions. The portal protein gp6 of bacteriophage SPP1 undergoes a concerted reorganization of the structural elements of its central channel during interaction with DNA. A network of protein-protein interactions primes consecutive binding of proteins gp15 and gp16 to extend and close the channel. This critical step that prevents genome leakage from the capsid is achieved by a previously unidentified allosteric mechanism: gp16 binding to two different regions of gp15 drives correct positioning and folding of an inner gp16 loop to interact with equivalent loops of the other gp16 subunits. Together, these loops build a plug that closes the channel. Gp16 then fastens the tail to yield the infectious virion. The gatekeeper system opens for viral genome exit at the beginning of infection but recloses afterward, suggesting a molecular diaphragm-like mechanism to control DNA efflux. The mechanisms described here, controlling the essential steps of phage genome movements during virus assembly and infection, are likely to be conserved among long-tailed phages, the largest group of viruses in the Biosphere.


Assuntos
Bacteriófagos/química , Genoma Viral/fisiologia , Modelos Moleculares , Proteínas Virais/química , Proteínas da Cauda Viral/química , Montagem de Vírus/fisiologia , Internalização do Vírus , Bacteriófagos/ultraestrutura , Microscopia Crioeletrônica , Genoma Viral/genética , Conformação Proteica , Proteínas Virais/metabolismo , Proteínas Virais/ultraestrutura , Proteínas da Cauda Viral/metabolismo , Proteínas da Cauda Viral/ultraestrutura
13.
J Biol Chem ; 290(12): 7973-9, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25648893

RESUMO

ATP-dependent DNA unwinding activity has been demonstrated for recombinant archaeal homohexameric minichromosome maintenance (MCM) complexes and their yeast heterohexameric counterparts, but in higher eukaryotes such as Drosophila, MCM-associated DNA helicase activity has been observed only in the context of a co-purified Cdc45-MCM-GINS complex. Here, we describe the production of the recombinant human MCM (hMCM) complex in Escherichia coli. This protein displays ATP hydrolysis activity and is capable of unwinding duplex DNA. Using single-particle asymmetric EM reconstruction, we demonstrate that recombinant hMCM forms a hexamer that undergoes a conformational change when bound to DNA. Recombinant hMCM produced without post-translational modifications is functional in vitro and provides an important tool for biochemical reconstitution of the human replicative helicase.


Assuntos
Cromossomos Humanos , DNA/química , Proteínas de Manutenção de Minicromossomo/química , Sequência de Bases , Humanos , Dados de Sequência Molecular , Conformação Proteica
14.
Biochim Biophys Acta ; 1837(4): 418-26, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24183696

RESUMO

Oxidative phosphorylation (OXPHOS) is the main source of energy in eukaryotic cells. This process is performed by means of electron flow between four enzymes, of which three are proton pumps, in the inner mitochondrial membrane. The energy accumulated in the proton gradient over the inner membrane is utilized for ATP synthesis by a fifth OXPHOS complex, ATP synthase. Four of the OXPHOS protein complexes associate into stable entities called respiratory supercomplexes. This review summarises the current view on the arrangement of the electron transport chain in mitochondrial cristae. The functional role of the supramolecular organisation of the OXPHOS system and the factors that stabilise such organisation are highlighted. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Membranas Mitocondriais/metabolismo , Fosforilação Oxidativa , Animais , Transporte de Elétrons , Humanos , Modelos Biológicos , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformação Proteica
15.
Structure ; 20(5): 899-910, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22579255

RESUMO

Mediator, a large (21 polypeptides, MW ∼1 MDa) complex conserved throughout eukaryotes, plays an essential role in control of gene expression by conveying regulatory signals that influence the activity of the preinitiation complex. However, the precise mode of interaction between Mediator and RNA polymerase II (RNAPII), and the mechanism of regulation by Mediator remain elusive. We used cryo-electron microscopy and reconstituted in vitro transcription assays to characterize a transcriptionally-active complex including the Mediator Head module and components of a minimum preinitiation complex (RNAPII, TFIIF, TFIIB, TBP, and promoter DNA). Our results reveal how the Head interacts with RNAPII, affecting its conformation and function.


Assuntos
Complexo Mediador/química , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Complexo Mediador/metabolismo , Complexo Mediador/ultraestrutura , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição TFII/química , Fatores de Transcrição TFII/metabolismo
16.
Nat Struct Mol Biol ; 18(11): 1196-203, 2011 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-21984211

RESUMO

We have used EM and biochemistry to characterize the structure of NuA4, an essential yeast histone acetyltransferase (HAT) complex conserved throughout eukaryotes, and we have determined the interaction of NuA4 with the nucleosome core particle (NCP). The ATM-related Tra1 subunit, which is shared with the SAGA coactivator complex, forms a large domain joined to a second region that accommodates the catalytic subcomplex Piccolo and other NuA4 subunits. EM analysis of a NuA4-NCP complex shows the NCP bound at the periphery of NuA4. EM characterization of Piccolo and Piccolo-NCP provided further information about subunit organization and confirmed that histone acetylation requires minimal contact with the NCP. A small conserved region at the N terminus of Piccolo subunit enhancer of Polycomb-like 1 (Epl1) is essential for NCP interaction, whereas the subunit yeast homolog of mammalian Ing1 2 (Yng2) apparently positions Piccolo for efficient acetylation of histone H4 or histone H2A tails. Taken together, these results provide an understanding of the NuA4 subunit organization and the NuA4-NCP interactions.


Assuntos
Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilação , Animais , Cromatina/metabolismo , Histona Acetiltransferases/genética , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Nucleossomos/química , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
17.
PLoS One ; 5(1): e8586, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-20062530

RESUMO

In eukaryotes, meiotic recombination is a major source of genetic diversity, but its defects in humans lead to abnormalities such as Down's, Klinefelter's and other syndromes. Human Dmc1 (hDmc1), a RecA/Rad51 homologue, is a recombinase that plays a crucial role in faithful chromosome segregation during meiosis. The initial step of homologous recombination occurs when hDmc1 forms a filament on single-stranded (ss) DNA. However the structure of this presynaptic complex filament for hDmc1 remains unknown. To compare hDmc1-ssDNA complexes to those known for the RecA/Rad51 family we have obtained electron microscopy (EM) structures of hDmc1-ssDNA nucleoprotein filaments using single particle approach. The EM maps were analysed by docking crystal structures of Dmc1, Rad51, RadA, RecA and DNA. To fully characterise hDmc1-DNA complexes we have analysed their organisation in the presence of Ca2+, Mg2+, ATP, AMP-PNP, ssDNA and dsDNA. The 3D EM structures of the hDmc1-ssDNA filaments allowed us to elucidate the principles of their internal architecture. Similar to the RecA/Rad51 family, hDmc1 forms helical filaments on ssDNA in two states: extended (active) and compressed (inactive). However, in contrast to the RecA/Rad51 family, and the recently reported structure of hDmc1-double stranded (ds) DNA nucleoprotein filaments, the extended (active) state of the hDmc1 filament formed on ssDNA has nine protomers per helical turn, instead of the conventional six, resulting in one protomer covering two nucleotides instead of three. The control reconstruction of the hDmc1-dsDNA filament revealed 6.4 protein subunits per helical turn indicating that the filament organisation varies depending on the DNA templates. Our structural analysis has also revealed that the N-terminal domain of hDmc1 accomplishes its important role in complex formation through domain swapping between adjacent protomers, thus providing a mechanistic basis for coordinated action of hDmc1 protomers during meiotic recombination.


Assuntos
Proteínas de Ciclo Celular/química , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Adenosina Trifosfatases/metabolismo , Sequência de Bases , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Eletroforese em Gel de Ágar , Humanos , Microscopia Eletrônica , Modelos Moleculares
18.
Nat Struct Mol Biol ; 15(12): 1272-7, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19029894

RESUMO

ATP-dependent chromatin-remodeling complexes, such as RSC, can reposition, evict or restructure nucleosomes. A structure of a RSC-nucleosome complex with a nucleosome determined by cryo-EM shows the nucleosome bound in a central RSC cavity. Extensive interaction of RSC with histones and DNA seems to destabilize the nucleosome and lead to an overall ATP-independent rearrangement of its structure. Nucleosomal DNA appears disordered and largely free to bulge out into solution as required for remodeling, but the structure of the RSC-nucleosome complex indicates that RSC is unlikely to displace the octamer from the nucleosome to which it is bound. Consideration of the RSC-nucleosome structure and published biochemical information suggests that ATP-dependent DNA translocation by RSC may result in the eviction of histone octamers from adjacent nucleosomes.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/ultraestrutura , Nucleossomos/química , Nucleossomos/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Transcrição/química , Fatores de Transcrição/ultraestrutura , Microscopia Crioeletrônica , Processamento de Imagem Assistida por Computador , Modelos Moleculares , Estrutura Quaternária de Proteína
19.
Biochim Biophys Acta ; 1708(2): 196-200, 2005 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-15953476

RESUMO

Projection maps of a V(1)-Vma5p hybrid complex, composed of subunit C (Vma5p) of Saccharomyces cerevisiae V-ATPase and the C-depleted V(1) from Manduca sexta, were determined from single particle electron microscopy. V(1)-Vma5p consists of a headpiece and an elongated wedgelike stalk with a 2.1x3.0 nm protuberance and a 9.5x7.5 globular domain, interpreted to include Vma5p. The interaction face of Vma5p in V(1) was explored by chemical modification experiments.


Assuntos
Manduca/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , Animais , Eletroforese em Gel de Poliacrilamida , Microscopia Eletrônica , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , ATPases Vacuolares Próton-Translocadoras/isolamento & purificação
20.
J Biol Chem ; 279(46): 47866-70, 2004 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-15355991

RESUMO

Co-reconstitution of subunits E and G of the yeast V-ATPase and the alpha and beta subunits of the F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) resulted in an alpha(3)beta(3)EG hybrid complex showing 53% of the ATPase activity of TF(1). The alpha(3)beta(3)EG oligomer was characterized by electron microscopy. By processing 40,000 single particle projections, averaged two-dimensional projections at 1.2-2.4-nm resolution were obtained showing the hybrid complex in various positions. Difference mapping of top and side views of this complex with projections of the atomic model of the alpha(3)beta(3) subcomplex from TF(1) (Shirakihara, Y., Leslie, A. G., Abrahams, J. P., Walker, J. E., Ueda, T., Sekimoto, Y., Kambara, M., Saika, K., Kagawa, Y., and Yoshida, M. (1997) Structure 5, 825-836) demonstrates that a seventh mass is located inside the shaft of the alpha(3)beta(3) barrel and extends out from the hexamer. Furthermore, difference mapping of the alpha(3)beta(3)EG oligomer with projections of the A(3)B(3)E and A(3)B(3)EC subcomplexes of the V(1) from Caloramator fervidus (Chaban, Y., Ubbink-Kok, T., Keegstra, W., Lolkema, J. S., and Boekema, E. J. (2002) EMBO Rep. 3, 982-987) shows that the mass inside the shaft is made up of subunit E, whereby subunit G was assigned to belong at least in part to the density of the protruding stalk. The formation of an active alpha(3)beta(3)EG hybrid complex indicates that the coupling subunit gamma inside the alpha(3)beta(3) oligomer of F(1) can be effectively replaced by subunit E of the V-ATPase. Our results have also demonstrated that the E and gamma subunits are structurally similar, despite the fact that their genes do not show significant homology.


Assuntos
Estrutura Quaternária de Proteína , Subunidades Proteicas/química , ATPases Translocadoras de Prótons/química , ATPases Vacuolares Próton-Translocadoras/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestrutura , Complexos Multienzimáticos , Estrutura Secundária de Proteína , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/ultraestrutura , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA