Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lipids Health Dis ; 23(1): 56, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389069

RESUMO

BACKGROUND: Type 2 Diabetes (T2D) is influenced by genetic, environmental, and ageing factors. Ageing pathways exacerbate metabolic diseases. This study aimed to examine both clinical and genetic factors of T2D in older adults. METHODS: A total of 2,909 genotyped patients were enrolled in this study. Genome Wide Association Study was conducted, comparing T2D patients to non-diabetic older adults aged ≥ 60, ≥ 65, or ≥ 70 years, respectively. Binomial logistic regressions were applied to examine the association between T2D and various risk factors. Stepwise logistic regression was conducted to explore the impact of low HDL (HDL < 40 mg/dl) on the relationship between the genetic variants and T2D. A further validation step using data from the UK Biobank with 53,779 subjects was performed. RESULTS: The association of T2D with both low HDL and family history of T2D increased with the age of control groups. T2D susceptibility variants (rs7756992, rs4712523 and rs10946403) were associated with T2D, more significantly with increased age of the control group. These variants had stronger effects on T2D risk when combined with low HDL cholesterol levels, especially in older control groups. CONCLUSIONS: The findings highlight a critical role of age, genetic predisposition, and HDL levels in T2D risk. The findings suggest that individuals over 70 years who have high HDL levels without the T2D susceptibility alleles may be at the lowest risk of developing T2D. These insights can inform tailored preventive strategies for older adults, enhancing personalized T2D risk assessments and interventions.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Idoso , Diabetes Mellitus Tipo 2/genética , Alelos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Predisposição Genética para Doença , HDL-Colesterol/genética
2.
Rev Endocr Metab Disord ; 25(2): 369-382, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38064002

RESUMO

Diabetes mellitus is a metabolic disorder denoted by chronic hyperglycemia that drives maladaptive structural changes and functional damage to the vasculature. Attenuation of this pathological remodeling of blood vessels remains an unmet target owing to paucity of information on the metabolic signatures of this process. Ca2+/calmodulin-dependent kinase II (CaMKII) is expressed in the vasculature and is implicated in the control of blood vessels homeostasis. Recently, CaMKII has attracted a special attention in view of its chronic upregulated activity in diabetic tissues, yet its role in the diabetic vasculature remains under investigation.This review highlights the physiological and pathological actions of CaMKII in the diabetic vasculature, with focus on the control of the dialogue between endothelial (EC) and vascular smooth muscle cells (VSMC). Activation of CaMKII enhances EC and VSMC proliferation and migration, and increases the production of extracellular matrix which leads to maladaptive remodeling of vessels. This is manifested by activation of genes/proteins implicated in the control of the cell cycle, cytoskeleton organization, proliferation, migration, and inflammation. Endothelial dysfunction is paralleled by impaired nitric oxide signaling, which is also influenced by CaMKII signaling (activation/oxidation). The efficiency of CaMKII inhibitors is currently being tested in animal models, with a focus on the genetic pathways involved in the regulation of CaMKII expression (microRNAs and single nucleotide polymorphisms). Interestingly, studies highlight an interaction between the anti-diabetic drugs and CaMKII expression/activity which requires further investigation. Together, the studies reviewed herein may guide pharmacological approaches to improve health-related outcomes in patients with diabetes.


Assuntos
Diabetes Mellitus , Lesões do Sistema Vascular , Animais , Humanos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Transdução de Sinais
3.
Diabetes Res Clin Pract ; 207: 111052, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072013

RESUMO

AIMS: Type 2 diabetes (T2D) and coronary artery disease (CAD) often coexist and share genetic factors.This study aimed to investigate the common genetic factors underlying T2D and CAD in patients with CAD. METHODS: A three-step association approach was conducted: a) a discovery step involving 943 CAD patients with T2D and 1,149 CAD patients without T2D; b) an eliminating step to exclude CAD or T2D specific variants; and c) a replication step using the UK Biobank data. RESULTS: Ten genetic loci were associated with T2D in CAD patients. Three variants were specific to either CAD or T2D. Five variants lost significance after adjusting for covariates, while two SNPs remained associated with T2D in CAD patients (rs7904519*G: TCF7L2 and rs17608766*C: GOSR2). The T2D susceptibility rs7904519*G was associated with increased T2D risk, while the CAD susceptibility rs17608766*C was negatively associated with T2D in CAD patients. These associations were replicated in a UK Biobank data, confirming the results. CONCLUSIONS: No significant common T2D and CAD susceptibility genetic association was demonstrated indicating distinct disease pathways. However, CAD patients carrying the T2D susceptibility gene TCF7L2 remain at higher risk for developing T2D emphasizing the need for frequent monitoring in this subgroup.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicações , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/complicações , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Loci Gênicos , Fatores de Risco , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteínas Qb-SNARE/genética
4.
Vasc Health Risk Manag ; 19: 83-92, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814994

RESUMO

Background and Objective: Coronary artery disease (CAD) is a major cause of death worldwide. Revascularization via stent placement or coronary artery bypass grafting (CABG) are standard treatments for CAD. Despite a high success rate, these approaches are associated with long-term failure due to restenosis. Risk factors associated with restenosis were investigated using a case-control association study design. Methods: Five thousand two hundred and forty-two patients were enrolled in this study and were assigned as follows: Stenosis Group: 3570 patients with CAD >50% without a prior stent or CABG (1394 genotyped), and Restenosis Group: 1672 patients with CAD >50% and prior stent deployment or CABG (705 genotyped). Binomial regression models were applied to investigate the association of restenosis with diabetes, hypertension, and dyslipidemia. The genetic association with restenosis was conducted using PLINK 1.9. Results: Dyslipidemia is a major risk factor (Odds Ratio (OR) = 2.14, P-value <0.0001) for restenosis particularly among men (OR = 2.32, P < 0.0001), while type 2 diabetes (T2D) was associated with an increased risk of restenosis in women (OR = 1.36, P = 0.01). The rs9349379 (PHACTR1) and rs264 (LPL) were associated with an increased risk of restenosis in our patients. PHACTR1 variant was associated with increased risk of restenosis mainly in women and in diabetic patients, while the LPL variant was associated with increased risk of restenosis in men. Conclusion: The rs9349379 in PHACTR1 gene is significantly associated with restenosis, this association is more pronounced in women and in diabetic patients. The rs264 in LPL gene was associated with increased risk of restenosis in male patients.


Assuntos
Doença da Artéria Coronariana , Reestenose Coronária , Diabetes Mellitus Tipo 2 , Dislipidemias , Humanos , Masculino , Feminino , Diabetes Mellitus Tipo 2/complicações , Constrição Patológica/complicações , Doença da Artéria Coronariana/terapia , Fatores de Risco
5.
Vasc Health Risk Manag ; 19: 31-41, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36703868

RESUMO

Backgrounds and Aims: The role of Lipoprotein(a) (Lp(a)) in increasing the risk of cardiovascular diseases is reported in several populations. The aim of this study is to investigate the correlation of high Lp(a) levels with the degree of coronary artery stenosis. Methods: Two hundred and sixty-eight patients were enrolled for this study. Patients who underwent coronary artery angiography and who had Lp(a) measurements available were included in this study. Binomial logistic regressions were applied to investigate the association between Lp(a) and stenosis in the four major coronary arteries. The effect of LDL and HDL Cholesterol on modulating the association of Lp(a) with coronary artery disease (CAD) was also evaluated. Multinomial regression analysis was applied to assess the association of Lp(a) with the different degrees of stenosis in the four major coronary arteries. Results: Our analyses showed that Lp(a) is a risk factor for CAD and this risk is significantly apparent in patients with HDL-cholesterol ≥35 mg/dL and in non-obese patients. A large proportion of the study patients with elevated Lp(a) levels had CAD even when exhibiting high HDL serum levels. Increased HDL with low Lp(a) serum levels were the least correlated with stenosis. A significantly higher levels of Lp(a) were found in patients with >50% stenosis in at least two major coronary vessels arguing for pronounced and multiple stenotic lesions. Finally, the derived variant (rs1084651) of the LPA gene was significantly associated with CAD. Conclusion: Our study highlights the importance of Lp(a) levels as an independent biological marker of severe and multiple coronary artery stenosis.


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Humanos , Constrição Patológica , Estenose Coronária/diagnóstico por imagem , Angiografia Coronária , Lipoproteína(a) , Fatores de Risco , HDL-Colesterol
6.
Front Endocrinol (Lausanne) ; 13: 946313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35872997

RESUMO

The sinoatrial node (SAN) is composed of highly specialized cells that mandate the spontaneous beating of the heart through self-generation of an action potential (AP). Despite this automaticity, the SAN is under the modulation of the autonomic nervous system (ANS). In diabetes mellitus (DM), heart rate variability (HRV) manifests as a hallmark of diabetic cardiomyopathy. This is paralleled by an impaired regulation of the ANS, and by a pathological remodeling of the pacemaker structure and function. The direct effect of diabetes on the molecular signatures underscoring this pathology remains ill-defined. The recent focus on the electrical currents of the SAN in diabetes revealed a repressed firing rate of the AP and an elongation of its tracing, along with conduction abnormalities and contractile failure. These changes are blamed on the decreased expression of ion transporters and cell-cell communication ports at the SAN (i.e., HCN4, calcium and potassium channels, connexins 40, 45, and 46) which further promotes arrhythmias. Molecular analysis crystallized the RGS4 (regulator of potassium currents), mitochondrial thioredoxin-2 (reactive oxygen species; ROS scavenger), and the calcium-dependent calmodulin kinase II (CaMKII) as metabolic culprits of relaying the pathological remodeling of the SAN cells (SANCs) structure and function. A special attention is given to the oxidation of CaMKII and the generation of ROS that induce cell damage and apoptosis of diabetic SANCs. Consequently, the diabetic SAN contains a reduced number of cells with significant infiltration of fibrotic tissues that further delay the conduction of the AP between the SANCs. Failure of a genuine generation of AP and conduction of their derivative waves to the neighboring atrial myocardium may also occur as a result of the anti-diabetic regiment (both acute and/or chronic treatments). All together, these changes pose a challenge in the field of cardiology and call for further investigations to understand the etiology of the structural/functional remodeling of the SANCs in diabetes. Such an understanding may lead to more adequate therapies that can optimize glycemic control and improve health-related outcomes in patients with diabetes.


Assuntos
Remodelamento Atrial , Diabetes Mellitus , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Humanos , Espécies Reativas de Oxigênio/metabolismo , Nó Sinoatrial/fisiologia
7.
J Cardiovasc Transl Res ; 15(6): 1340-1351, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35445935

RESUMO

The present study aims to assess the effect of vitamin D deficiency (VDD) and its supplementation on the severity of AAA in mice. AAA was induced by AngII and anti-TGF-ß administration. Animals were divided into four groups: Sham, mice with AAA, mice with AAA, and VDD, and mice with AAA supplemented with calcitriol. Blood pressure, echocardiography, abdominal aortic tissues, and plasma samples were monitored for all groups. VDD was associated with enhanced activity of cleaved MMP-9 and elastin degradation and positively correlated with the severity of AAA. Calcitriol supplementation decreased the INFγ/IL-10 ratio and enhanced the Nrf2 pathway. Moreover, Cu/Zn-superoxide dismutase expression and catalase and neutral sphingomyelinase activity were exacerbated in AAA and VDD groups. Furthermore, calcitriol supplementation showed a significantly lower protein expression of caspase-8, caspase-3, Bid, and t-Bid, and prevented the apoptosis of VSMCs treated by AngII and anti-TGF-ß. Calcitriol supplementation may alleviate AAA severity and could be of great interest in the clinical management of AAA. VDD enhances antioxidant enzymes activity and expression, whereas calcitriol supplementation alleviates AAA severity by re-activating Nrf2 and inhibiting apoptotic pathways.


Assuntos
Aneurisma da Aorta Abdominal , Calcitriol , Animais , Camundongos , Angiotensina II/efeitos adversos , Aorta Abdominal , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/prevenção & controle , Apoptose , Calcitriol/farmacologia , Calcitriol/uso terapêutico , Suplementos Nutricionais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Fator de Crescimento Transformador beta/antagonistas & inibidores
8.
Aging Cell ; 18(2): e12894, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30680911

RESUMO

With the onset of advanced age, cardiac-associated pathologies have increased in prevalence. The hallmarks of cardiac aging include cardiomyocyte senescence, fibroblast proliferation, inflammation, and hypertrophy. The imbalance between levels of reactive oxygen species (ROS) and antioxidant enzymes is greatly enhanced in aging cells, promoting cardiac remodeling. In this work, we studied the long-term impact of phenolic compounds (PC) on age-associated cardiac remodeling. Three-month-old Wistar rats were treated for 14 months till middle-age with either 2.5, 5, 10, or 20 mg kg-1  day-1 of PC. PC treatment showed a dose-dependent preservation of cardiac ejection fraction and fractional shortening as well as decreased hypertrophy reflected by left ventricular chamber diameter and posterior wall thickness as compared to untreated middle-aged control animals. Analyses of proteins from cardiac tissue showed that PC attenuated several hypertrophic pathways including calcineurin/nuclear factor of activated T cells (NFATc3), calcium/calmodulin-dependent kinase II (CAMKII), extracellular regulated kinase 1/2 (ERK1/2), and glycogen synthase kinase 3ß (GSK 3ß). PC-treated groups exhibited reduced plasma inflammatory and fibrotic markers and revealed as well ameliorated extracellular matrix remodeling and interstitial inflammation by a downregulated p38 pathway. Myocardia from PC-treated middle-aged rats presented less fibrosis with suppression of profibrotic transforming growth factor-ß1 (TGF-ß1) Smad pathway. Additionally, reduction of apoptosis and oxidative damage in the PC-treated groups was reflected by elevated antioxidant enzymes and reduced RNA/DNA damage markers. Our findings pinpoint that a daily consumption of phenolic compounds could preserve the heart from the detrimental effects of aging storm.


Assuntos
Envelhecimento , Modelos Biológicos , Fenóis/farmacologia , Disfunção Ventricular Esquerda/prevenção & controle , Remodelação Ventricular/efeitos dos fármacos , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Dieta , Relação Dose-Resposta a Droga , Ecocardiografia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fenóis/administração & dosagem , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Disfunção Ventricular Esquerda/metabolismo
9.
Antioxid Redox Signal ; 30(16): 1851-1879, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30318928

RESUMO

AIMS: Cardiac fibroblasts (CFs) are emerging as major contributors to myocardial fibrosis (MF), a final common pathway of many etiologies of heart disease. Here, we studied the functional relevance of transient receptor potential canonical 3 (TRPC3) channels and nuclear factor of activated T cells c3 (NFATc3) signaling in rodent and human ventricular CFs, and whether their modulation would limit MF. RESULTS: A positive feedback loop between TRPC3 and NFATc3 drove a rat ventricular CF fibrotic phenotype. In these cells, polyphenols (extract of grape pomace polyphenol [P.E.]) decreased basal and angiotensin II-mediated Ca2+ entries through a direct modulation of TRPC3 channels and subsequently NFATc3 signaling, abrogating myofibroblast differentiation, fibrosis and inflammation, as well as an oxidative stress-associated phenotype. N(ω)-nitro-l-arginine methyl ester (l-NAME) hypertensive rats developed coronary perivascular, sub-epicardial, and interstitial fibrosis with induction of embryonic epicardial progenitor transcription factors in activated CFs. P.E. treatment reduced ventricular CF activation by modulating the TRPC3-NFATc3 pathway, and it ameliorated echocardiographic parameters, cardiac stress markers, and MF in l-NAME hypertensive rats independently of blood pressure regulation. Further, genetic deletion (TRPC3-/-) and pharmacological channel blockade with N-[4-[3,5-Bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-4-methyl-benzenesulfonamide (Pyr10) blunted ventricular CF activation and MF in l-NAME hypertensive mice. Finally, TRPC3 was present in human ventricular CFs and upregulated in MF, whereas pharmacological modulation of TRPC3-NFATc3 decreased proliferation and collagen secretion. Innovation and Conclusion: We demonstrate that TRPC3-NFATc3 signaling is modulated by P.E. and critically regulates ventricular CF phenotype and MF. These findings strongly argue for P.E., through TRPC3 targeting, as potential and interesting therapeutics for MF management.


Assuntos
Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Biomarcadores , Pressão Sanguínea/efeitos dos fármacos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Cardiomiopatias/patologia , Fibroblastos/metabolismo , Fibrose , Ativação do Canal Iônico , Fatores de Transcrição NFATC/genética , Fenótipo , Polifenóis/farmacologia , Ratos , Estresse Fisiológico , Canais de Cátion TRPC/genética
10.
Antioxidants (Basel) ; 7(6)2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29866989

RESUMO

The high diversity of phenolic compounds (PC) found in food matrices makes it challenging to analyze their bioavailability and their impact on health and functional metabolism. It is well recognized that PC do modulate the composition of the gut microbiota (GM), however, the literature still lacks significant data concerning the link between the metabolic fate of the ingested compounds and their bioactivity, mainly when considering the secondary metabolites produced. In this study, we assessed the metabolic fate of PC for a period covering 14 months of daily intake to identify the metabolites that could be responsible for the effects of PC on the GM observed in our previous work. Urinary analysis of polyphenol metabolites was performed using a high resolution mass spectrometry LC-QTOF-MS method. Among the sixteen metabolites identified, 3-hydroxyphenylacetic acid and 2-(4-hydroxyphenyl) propionic acid were detected simultaneously and, therefore, correlated with the growth of Bifidobacterium in the rat GM. In addition, Daidzedin, detected only at 14 months post-treatment, mostly interfered with the growth inhibition of Clostridium (Cluster I). In conclusion, the impact of the long-term intake of PC on rat GM seems to be related to specific metabolites produced after ingestion of the parental compounds and this may also be due to their additional synergistic effects.

11.
J Food Sci ; 83(1): 246-251, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29227528

RESUMO

The aim of this work is to evaluate the impact on the rat microbiota of long-term feeding with phenolic compounds (PC) rich grape pomace extracts. Thirty, 2-mo-old rats, were divided into 5 groups. Four groups were treated with different concentrations of PC (2.5, 5, 10, and 20 mg/kg/d diluted in 0.1% DMSO), and 1 group received 0.1% Dimethyl Sulfoxide (DMSO) alone (control group). The daily treatment lasted 14 mo. Major phenolic compounds constituents were characterized by the high-performance liquid chromatography and free radical scavenging capacity was measured by means of the DPPH assay. Fecal samples from young rats (2-mo old), and rats daily fed with PC or DMSO were collected at 6 and 14 mo posttreatment. The gut microbiota composition was analyzed by quantitative polymerase chain reaction. Bifidobacterium was significantly higher in the groups PC 2.5 and PC 5 than in control and young rats. Lactobacillus decreased with time in all treated and untreated groups. Bacteroides, Clostridium leptum subgroup (Clostridium cluster IV), and Enterococcus were not significantly changed by PC at any concentration when compared to control; nevertheless, after 14 mo of treatment all concentrations of PC abolished the increase of Clostridium sensu stricto (cluster I) (Clostridium Cluster I) observed in the control group when compared to young rats. PC do modulate selectively rat gut microbiome to a healthier phenotype in long-term feeding rats, and could counteract the adverse outcomes of aging on gut bacterial population. PRACTICAL APPLICATION: This research shows that phenolic-rich grape pomace extracts exhibiting a high antioxidant activity, selectively modulate rat gut microbiota to a healthier phenotype within age in a long-term feeding rats.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Vitis/química , Animais , Bifidobacterium/isolamento & purificação , Clostridium/isolamento & purificação , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Lactobacillus/isolamento & purificação , Masculino , Ratos , Ratos Wistar
12.
J Cell Physiol ; 232(4): 725-730, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27685887

RESUMO

Cardiac fibroblasts are commonly known as supporting cells of the cardiac network and exert many essential functions that are fundamental for normal cardiac growth as well as for cardiac remodeling process during pathological conditions. This review focuses on the roles of cardiac fibroblasts in the formation and regulation of the extracellular matrix components, and in maintaining structural, biochemical and mechanical properties of the heart. Additionally, though considered as non-excitable cells, we review the functional expression in cardiac fibroblasts of a wide variety of transmembrane ion channels which activity may contribute to key regulation of cardiac physiological processes. All together, cardiac fibroblasts which actively participate to fundamental regulation of cardiac physiology and physiopathology processes may represent pertinent targets for pharmacological approaches of cardiac diseases and lead to new tracks of therapeutic strategies. J. Cell. Physiol. 232: 725-730, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Fibroblastos/metabolismo , Miocárdio/citologia , Transdução de Sinais , Animais , Forma Celular , Fibroblastos/citologia , Fibrose , Humanos , Mecanotransdução Celular
13.
J Agric Food Chem ; 63(13): 3387-93, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25786852

RESUMO

This work optimized the ß-cyclodextrin (ß-CD)-assisted extraction process of polyphenols from vine shoots. The efficiency of ß-CD was compared to that of ethanol in terms of the quantity and antioxidant capacity (AC) of the extracted polyphenols. Response surface methodology permitted the optimization of the ß-CD concentration, time, and temperature. The optimal polyphenol content (PC) [5.8 mg of gallic acid equivalent (GAE)/g of dry matter (DM)] and AC [3146 micromolar trolox equivalent per milliliter (µMTE)] were initially obtained with Syrah cultivar after an extraction of 48 h at 66.6 °C with a 37.7 mg/mL aqueous ß-CD solvent. The same PC (5.8 mg of GAE/g of DM) was reached with 50% ethanol/water solvent after 1.65 h. However, a lower AC was found with ethanol (2000 µMTE) compared to ß-CD. A comparison of the PC and AC of four different vine shoot cultivars was realized. Our results clearly show the capacity of ß-CD to amplify polyphenol extraction from vine shoots.


Assuntos
Brotos de Planta/química , Polifenóis/isolamento & purificação , Vitis/química , beta-Ciclodextrinas , Antioxidantes , Etanol , Extratos Vegetais/química , Solventes , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA