Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(40): 28160-28164, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37753393

RESUMO

Understanding the precise effects of defects on the photophysical properties of quantum dots (QDs) is essential to their development with near-unity luminescence. Because of the complicated nature of defects in QDs, the origins and detailed roles of the defects still remain rarely understood. In this regard, we used detailed chemical analysis to investigate the effect of surface defects on the optical properties of InP/ZnSe/ZnS QDs by introducing shell defects through controlled trifluoroacetic acid (TFA) etching. TFA treatment on the InP/ZnSe/ZnS QDs partially removed the ZnS shell as well as ligands and reduced the quantum yield by generating energetically deep surface traps. The surface defects of QDs by TFA cause charged trap sites inducing an Auger recombination process with a rate of ca. 200 ps. Based on these results, we proposed possible trap-assisted non-radiative decay pathways between the band-edge state and surface deep traps in InP/ZnSe/ZnS QDs.

2.
Nat Commun ; 12(1): 3814, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155217

RESUMO

To improve the performance of Li-ion batteries (LIBs), it is essential to understand the behaviour of Li ions during charge-discharge cycling. However, the analytical techniques for observing the Li ions are limited. Here, we present the complementary use of scanning transmission electron microscopy and atom probe tomography at identical locations to demonstrate that the evolution of the local Li composition and the corresponding structural changes at the atomic scale cause the capacity degradation of Li(Ni0.80Co0.15Mn0.05)O2 (NCM), an LIB cathode. Using these two techniques, we show that a Li concentration gradient evolves during cycling, and the depth of the gradient expands proportionally with the number of cycles. We further suggest that the capacity to accommodate Li ions is determined by the degree of structural disordering. Our findings provide direct evidence of the behaviour of Li ions during cycling and thus the origin of the capacity decay in LIBs.

3.
ACS Nano ; 13(6): 6513-6521, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31070885

RESUMO

An array of amorphous tin oxide (a-SnOx) nanohelixes (NHs) was fabricated on copper foil as an electrode for Na-ion batteries via the oblique angle deposition method, a solution- and surfactant-free process. The combination of the amorphous phase SnOx with a low oxidation number and its vertically aligned NH geometry with a large surface area and high porosity, which facilitate Na-ion dynamics and accommodate the volume changes, enabled a reversible capacity of up to 915 mA h g-1 after 50 cycles, fast rate capability with 48.1% retention at 2 A g-1, and high stability, which are superior to those of crystalline nanoparticle-based electrodes.

4.
ACS Nano ; 12(12): 12109-12117, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30474967

RESUMO

Synthesizing semiconductor nanoparticles through core/shell structuring is an effective strategy to promote the functional, physical, and kinetic performance of optoelectronic materials. However, elucidating the internal structure and related atomic distribution of core/shell structured quantum dots (QDs) in three dimensions, particularly at heterostructure interfaces, has been an overarching challenge. Herein, by applying complementary analytical techniques of electron microscopy and atom probe tomography, the dimensional, structural, topological, and compositional information on commercially available 11.8 nm-sized CdSSe/ZnS QDs were obtained. Systematic experiments at high resolution reveal the presence of a 1.8 nm-thick Cd xZn1 - xS inner shell with a composition gradient between the CdSe core and the ZnS outermost shell. More strikingly, the inner shell shows compositional variation because of competitive atomic configuration between Cd and ZnS, but it structurally retains a zinc-blende crystal structure with the core. The inner shell may grow through the decreased reactivity of S with Cd, followed by atomic diffusion-related processes. The composition-competitive gradient inner shell alleviates lattice misfit strain at heterostructure interfaces, thereby enhancing the quantum yield and photostabilty to a greater extent than those of other single-shell structures. Thus, this precise measurement approach could offer a potential pathway to develop a wide variety of three-dimensional core/shell-structured materials.

5.
Adv Mater ; 29(30)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28605067

RESUMO

Creation of nanometer-scale conductive filaments in resistive switching devices makes them appealing for advanced electrical applications. While in situ electrical probing transmission electron microscopy promotes fundamental investigations of how the conductive filament comes into existence, it does not provide proof-of-principle observations for the filament growth. Here, using advanced microscopy techniques, electrical, 3D compositional, and structural information of the switching-induced conductive filament are described. It is found that during in situ probing microscopy of a Ag/TiO2 /Pt device showing both memory- and threshold-switching characteristics, a crystalline Ag-doped TiO2 forms at vacant sites on the device surface and acts as the conductive filament. More importantly, change in filament morphology varying with applied compliance currents determines the underlying switching mechanisms that govern either memory or threshold response. When focusing more on threshold switching features, it is demonstrated that the structural disappearance of the filament arises at the end of the constricted region and leads to the spontaneous phase transformation from crystalline conductive state into an initial amorphous insulator. Use of the proposed method enables a new pathway for observing nanosized features in a variety of devices at the atomic scale in three dimensions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA