Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38999651

RESUMO

Mining activities produce waste materials and effluents with very high metal concentrations that can negatively impact ecosystems and human health. Consequently, data on soil and plant metal levels are crucial for evaluating pollution severity and formulating soil reclamation strategies, such as phytoremediation. Our research focused on soils and vegetation of a highly contaminated site with potentially toxic metals (Pb, Zn, and Cu) in the Touissit mining districts of eastern Morocco. Vegetation inventory was carried out in three mine tailings of the Touissit mine fields using the "field tower" technique. Here, 91 species belonging to 23 families were inventoried: the most represented families were Poaceae and Asteraceae, and the biological spectrum indicated a predominance of Therophytes (55.12%). From the studied areas, 15 species were selected and collected in triplicate on the tailings and sampled with their corresponding rhizospheric soils, and analyzed for Pb, Zn, and Cu concentrations. Reseda lutea, lotus marocanus, and lotus corniculatus can be considered as hyperaccumulators of Pb, as these plants accumulated more than 1000 mg·kg-1 in their aerial parts. According to TF, these plant species could serve as effective plants for Pb phytoextraction.

2.
Sci Total Environ ; 935: 173424, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38782284

RESUMO

Due to the natural biochar aging, the improvement of soil quality and immobilization of soil pollutants achieved by biochar may change; understanding the dynamic evolution of the in situ performance of biochar in these roles is essential to discuss the long-term sustainability of biochar remediation. Therefore, in this study, combined biochar from co-pyrolysis of pig manure and invasive Japanese knotweed - P1J1, as well as pure pig manure - PM - and pure Japanese knotweed - JK - derived biochar were applied to investigate their remediation performance in a high As- and Pb-polluted soil with prolonged incubation periods (up to 360 days). Biochar application, especially P1J1 and PM, initially promoted soil pH, dissolved organic carbon, and EC, but the improvements were not constant through time. The JK-treated soil exhibited the highest increase of soil organic matter (OM), followed by P1J1 and then PM, and OM did not change with aging. Biochar, especially P1J1, was a comprehensive nutrient source of Ca, K, Mg, and P to improve soil fertility. However, while soluble cationic Ca, K, and Mg increased with time, anionic P decreased over time, indicating that continuous P availability might not be guaranteed with the aging process. The total microorganism content declined with time; adding biochars slowed down this tendency, which was more remarkable at the later incubation stage. Biochar significantly impeded soil Pb mobility but mobilized soil As, especially in PM- and P1J1-treated soils. However, mobilized As gradually re-fixed in the long run; meanwhile, the excellent Pb immobilization achieved by biochars was slightly reduced with time. The findings of this study offer fresh insights into the alterations in metal(loid)s mobility over an extended duration, suggesting that the potential mobilization risk of As is reduced while Pb mobility slightly increases over time.


Assuntos
Arsênio , Biodegradação Ambiental , Chumbo , Mineração , Poluentes do Solo , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/química , Esterco , Animais , Suínos , Pirólise , Chumbo/análise , Chumbo/química , Arsênio/análise , Arsênio/química , Reynoutria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA