Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Ann Neurol ; 93(4): 805-818, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36571386

RESUMO

OBJECTIVE: We examined medical records to determine health conditions associated with dementia at varied intervals prior to dementia diagnosis in participants from the Baltimore Longitudinal Study of Aging (BLSA). METHODS: Data were available for 347 Alzheimer's disease (AD), 76 vascular dementia (VaD), and 811 control participants without dementia. Logistic regressions were performed associating International Classification of Diseases, 9th Revision (ICD-9) health codes with dementia status across all time points, at 5 and 1 year(s) prior to dementia diagnosis, and at the year of diagnosis, controlling for age, sex, and follow-up length of the medical record. RESULTS: In AD, the earliest and most consistent associations across all time points included depression, erectile dysfunction, gait abnormalities, hearing loss, and nervous and musculoskeletal symptoms. Cardiomegaly, urinary incontinence, non-epithelial skin cancer, and pneumonia were not significant until 1 year before dementia diagnosis. In VaD, the earliest and most consistent associations across all time points included abnormal electrocardiogram (EKG), cardiac dysrhythmias, cerebrovascular disease, non-epithelial skin cancer, depression, and hearing loss. Atrial fibrillation, occlusion of cerebral arteries, essential tremor, and abnormal reflexes were not significant until 1 year before dementia diagnosis. INTERPRETATION: These findings suggest that some health conditions are associated with future dementia beginning at least 5 years before dementia diagnosis and are consistently seen over time, while others only reach significance closer to the date of diagnosis. These results also show that there are both shared and distinctive health conditions associated with AD and VaD. These results reinforce the need for medical intervention and treatment to lessen the impact of health comorbidities in the aging population. ANN NEUROL 2023;93:805-818.


Assuntos
Doença de Alzheimer , Transtornos Cerebrovasculares , Demência Vascular , Masculino , Humanos , Idoso , Doença de Alzheimer/complicações , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/diagnóstico , Demência Vascular/complicações , Demência Vascular/epidemiologia , Estudos Longitudinais , Transtornos Cerebrovasculares/epidemiologia , Comorbidade
2.
Neuroinformatics ; 20(2): 483-505, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34981404

RESUMO

Along with the increasing availability of electronic medical record (EMR) data, phenome-wide association studies (PheWAS) and phenome-disease association studies (PheDAS) have become a prominent, first-line method of analysis for uncovering the secrets of EMR. Despite this recent growth, there is a lack of approachable software tools for conducting these analyses on large-scale EMR cohorts. In this article, we introduce pyPheWAS, an open-source python package for conducting PheDAS and related analyses. This toolkit includes 1) data preparation, such as cohort censoring and age-matching; 2) traditional PheDAS analysis of ICD-9 and ICD-10 billing codes; 3) PheDAS analysis applied to a novel EMR phenotype mapping: current procedural terminology (CPT) codes; and 4) novelty analysis of significant disease-phenotype associations found through PheDAS. The pyPheWAS toolkit is approachable and comprehensive, encapsulating data prep through result visualization all within a simple command-line interface. The toolkit is designed for the ever-growing scale of available EMR data, with the ability to analyze cohorts of 100,000 + patients in less than 2 h. Through a case study of Down Syndrome and other intellectual developmental disabilities, we demonstrate the ability of pyPheWAS to discover both known and potentially novel disease-phenotype associations across different experiment designs and disease groups. The software and user documentation are available in open source at https://github.com/MASILab/pyPheWAS .


Assuntos
Registros Eletrônicos de Saúde , Estudo de Associação Genômica Ampla , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Software
3.
Eur Radiol ; 31(11): 8775-8785, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33934177

RESUMO

OBJECTIVES: To investigate machine learning classifiers and interpretable models using chest CT for detection of COVID-19 and differentiation from other pneumonias, interstitial lung disease (ILD) and normal CTs. METHODS: Our retrospective multi-institutional study obtained 2446 chest CTs from 16 institutions (including 1161 COVID-19 patients). Training/validation/testing cohorts included 1011/50/100 COVID-19, 388/16/33 ILD, 189/16/33 other pneumonias, and 559/17/34 normal (no pathologies) CTs. A metric-based approach for the classification of COVID-19 used interpretable features, relying on logistic regression and random forests. A deep learning-based classifier differentiated COVID-19 via 3D features extracted directly from CT attenuation and probability distribution of airspace opacities. RESULTS: Most discriminative features of COVID-19 are the percentage of airspace opacity and peripheral and basal predominant opacities, concordant with the typical characterization of COVID-19 in the literature. Unsupervised hierarchical clustering compares feature distribution across COVID-19 and control cohorts. The metrics-based classifier achieved AUC = 0.83, sensitivity = 0.74, and specificity = 0.79 versus respectively 0.93, 0.90, and 0.83 for the DL-based classifier. Most of ambiguity comes from non-COVID-19 pneumonia with manifestations that overlap with COVID-19, as well as mild COVID-19 cases. Non-COVID-19 classification performance is 91% for ILD, 64% for other pneumonias, and 94% for no pathologies, which demonstrates the robustness of our method against different compositions of control groups. CONCLUSIONS: Our new method accurately discriminates COVID-19 from other types of pneumonia, ILD, and CTs with no pathologies, using quantitative imaging features derived from chest CT, while balancing interpretability of results and classification performance and, therefore, may be useful to facilitate diagnosis of COVID-19. KEY POINTS: • Unsupervised clustering reveals the key tomographic features including percent airspace opacity and peripheral and basal opacities most typical of COVID-19 relative to control groups. • COVID-19-positive CTs were compared with COVID-19-negative chest CTs (including a balanced distribution of non-COVID-19 pneumonia, ILD, and no pathologies). Classification accuracies for COVID-19, pneumonia, ILD, and CT scans with no pathologies are respectively 90%, 64%, 91%, and 94%. • Our deep learning (DL)-based classification method demonstrates an AUC of 0.93 (sensitivity 90%, specificity 83%). Machine learning methods applied to quantitative chest CT metrics can therefore improve diagnostic accuracy in suspected COVID-19, particularly in resource-constrained environments.


Assuntos
COVID-19 , Humanos , Aprendizado de Máquina , Estudos Retrospectivos , SARS-CoV-2 , Tórax
4.
Korean J Radiol ; 22(6): 994-1004, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33686818

RESUMO

OBJECTIVE: To extract pulmonary and cardiovascular metrics from chest CTs of patients with coronavirus disease 2019 (COVID-19) using a fully automated deep learning-based approach and assess their potential to predict patient management. MATERIALS AND METHODS: All initial chest CTs of patients who tested positive for severe acute respiratory syndrome coronavirus 2 at our emergency department between March 25 and April 25, 2020, were identified (n = 120). Three patient management groups were defined: group 1 (outpatient), group 2 (general ward), and group 3 (intensive care unit [ICU]). Multiple pulmonary and cardiovascular metrics were extracted from the chest CT images using deep learning. Additionally, six laboratory findings indicating inflammation and cellular damage were considered. Differences in CT metrics, laboratory findings, and demographics between the patient management groups were assessed. The potential of these parameters to predict patients' needs for intensive care (yes/no) was analyzed using logistic regression and receiver operating characteristic curves. Internal and external validity were assessed using 109 independent chest CT scans. RESULTS: While demographic parameters alone (sex and age) were not sufficient to predict ICU management status, both CT metrics alone (including both pulmonary and cardiovascular metrics; area under the curve [AUC] = 0.88; 95% confidence interval [CI] = 0.79-0.97) and laboratory findings alone (C-reactive protein, lactate dehydrogenase, white blood cell count, and albumin; AUC = 0.86; 95% CI = 0.77-0.94) were good classifiers. Excellent performance was achieved by a combination of demographic parameters, CT metrics, and laboratory findings (AUC = 0.91; 95% CI = 0.85-0.98). Application of a model that combined both pulmonary CT metrics and demographic parameters on a dataset from another hospital indicated its external validity (AUC = 0.77; 95% CI = 0.66-0.88). CONCLUSION: Chest CT of patients with COVID-19 contains valuable information that can be accessed using automated image analysis. These metrics are useful for the prediction of patient management.


Assuntos
COVID-19/diagnóstico , Aprendizado Profundo , Tórax/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Automação , COVID-19/diagnóstico por imagem , COVID-19/virologia , Feminino , Humanos , Modelos Logísticos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Curva ROC , Estudos Retrospectivos , SARS-CoV-2/isolamento & purificação , Adulto Jovem
5.
Autism ; 25(3): 800-811, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32662293

RESUMO

LAY ABSTRACT: People with autism spectrum disorder often have a number of other medical conditions in addition to autism. These can range from constipation to epilepsy. This study uses medical record data to understand how frequently and how long people with autism have to be seen by a medical professional for these other medical conditions. This study confirmed that people with autism often have a number of other medical conditions and that they have to go see a medical professional about those conditions often. We also looked to see if children diagnosed with autism after age 5 years might have different medical conditions compared to children diagnosed earlier. Children diagnosed later had more conditions like asthma, hearing loss, and mood disorders. This work describes how much medical care people with autism get for different medical conditions and the burden of seeking additional medical care for people with autism and their families.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Epilepsia , Transtorno do Espectro Autista/epidemiologia , Transtorno Autístico/epidemiologia , Criança , Comorbidade , Epilepsia/epidemiologia , Humanos , Transtornos do Humor
6.
Ophthalmic Plast Reconstr Surg ; 37(4): 372-376, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33229950

RESUMO

PURPOSE: The authors sought to examine relationships between CT metrics derived via an automated method and clinical parameters of extraocular muscle changes in thyroid eye disease (TED). METHODS: CT images of 204 orbits in the setting of TED were analyzed with an automated segmentation tool developed at the institution. Labels were applied to orbital structures of interest on the study images, which were then registered against a previously established atlas of manually indexed orbits derived from 35 healthy individuals. Point-wise correspondences between study and atlas images were then compared via a fusion algorithm to highlight metrics of interest where TED orbits differed from healthy orbits. RESULTS: Univariate analysis demonstrated several correlations between CT metrics and clinical data. Metrics pertaining to the extraocular muscles-including average diameter, maximum diameter, and muscle volume-were strongly correlated (p < 0.05) with the presence of ocular motility deficits with regards to the superior, inferior, and lateral recti (with exception of superior rectus motility deficits being mildly correlated with muscle volume [p = 0.09]). Motility defects of the medial rectus were strongly correlated with muscle volume, and only weakly correlated with average and maximum muscle diameter. CONCLUSIONS: The novel method of automated imaging metrics may provide objective, rapid clinical information which may have utility in prevention and recognition of visual impairments in TED before they reach an advanced or irreversible stage and while they are able to be improved with immunomodulatory treatments.


Assuntos
Benchmarking , Oftalmopatia de Graves , Oftalmopatia de Graves/diagnóstico , Humanos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
7.
ArXiv ; 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-32550252

RESUMO

PURPOSE: To present a method that automatically segments and quantifies abnormal CT patterns commonly present in coronavirus disease 2019 (COVID-19), namely ground glass opacities and consolidations. MATERIALS AND METHODS: In this retrospective study, the proposed method takes as input a non-contrasted chest CT and segments the lesions, lungs, and lobes in three dimensions, based on a dataset of 9749 chest CT volumes. The method outputs two combined measures of the severity of lung and lobe involvement, quantifying both the extent of COVID-19 abnormalities and presence of high opacities, based on deep learning and deep reinforcement learning. The first measure of (PO, PHO) is global, while the second of (LSS, LHOS) is lobewise. Evaluation of the algorithm is reported on CTs of 200 participants (100 COVID-19 confirmed patients and 100 healthy controls) from institutions from Canada, Europe and the United States collected between 2002-Present (April, 2020). Ground truth is established by manual annotations of lesions, lungs, and lobes. Correlation and regression analyses were performed to compare the prediction to the ground truth. RESULTS: Pearson correlation coefficient between method prediction and ground truth for COVID-19 cases was calculated as 0.92 for PO (P < .001), 0.97 for PHO(P < .001), 0.91 for LSS (P < .001), 0.90 for LHOS (P < .001). 98 of 100 healthy controls had a predicted PO of less than 1%, 2 had between 1-2%. Automated processing time to compute the severity scores was 10 seconds per case compared to 30 minutes required for manual annotations. CONCLUSION: A new method segments regions of CT abnormalities associated with COVID-19 and computes (PO, PHO), as well as (LSS, LHOS) severity scores.

8.
Radiol Artif Intell ; 2(4): e200048, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33928255

RESUMO

PURPOSE: To present a method that automatically segments and quantifies abnormal CT patterns commonly present in coronavirus disease 2019 (COVID-19), namely ground glass opacities and consolidations. MATERIALS AND METHODS: In this retrospective study, the proposed method takes as input a non-contrasted chest CT and segments the lesions, lungs, and lobes in three dimensions, based on a dataset of 9749 chest CT volumes. The method outputs two combined measures of the severity of lung and lobe involvement, quantifying both the extent of COVID-19 abnormalities and presence of high opacities, based on deep learning and deep reinforcement learning. The first measure of (PO, PHO) is global, while the second of (LSS, LHOS) is lobe-wise. Evaluation of the algorithm is reported on CTs of 200 participants (100 COVID-19 confirmed patients and 100 healthy controls) from institutions from Canada, Europe and the United States collected between 2002-Present (April 2020). Ground truth is established by manual annotations of lesions, lungs, and lobes. Correlation and regression analyses were performed to compare the prediction to the ground truth. RESULTS: Pearson correlation coefficient between method prediction and ground truth for COVID-19 cases was calculated as 0.92 for PO (P < .001), 0.97 for PHO (P < .001), 0.91 for LSS (P < .001), 0.90 for LHOS (P < .001). 98 of 100 healthy controls had a predicted PO of less than 1%, 2 had between 1-2%. Automated processing time to compute the severity scores was 10 seconds per case compared to 30 minutes required for manual annotations. CONCLUSION: A new method segments regions of CT abnormalities associated with COVID-19 and computes (PO, PHO), as well as (LSS, LHOS) severity scores.

9.
PLoS One ; 14(11): e0225495, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31774837

RESUMO

Increasing reliance on electronic medical records at large medical centers provides unique opportunities to perform population level analyses exploring disease progression and etiology. The massive accumulation of diagnostic, procedure, and laboratory codes in one place has enabled the exploration of co-occurring conditions, their risk factors, and potential prognostic factors. While most of the readily identifiable associations in medical records are (now) well known to the scientific community, there is no doubt many more relationships are still to be uncovered in EMR data. In this paper, we introduce a novel finding index to help with that task. This new index uses data mined from real-time PubMed abstracts to indicate the extent to which empirically discovered associations are already known (i.e., present in the scientific literature). Our methods leverage second-generation p-values, which better identify associations that are truly clinically meaningful. We illustrate our new method with three examples: Autism Spectrum Disorder, Alzheimer's Disease, and Optic Neuritis. Our results demonstrate wide utility for identifying new associations in EMR data that have the highest priority among the complex web of correlations and causalities. Data scientists and clinicians can work together more effectively to discover novel associations that are both empirically reliable and clinically understudied.


Assuntos
Doença de Alzheimer/epidemiologia , Transtorno do Espectro Autista/epidemiologia , Registros Eletrônicos de Saúde/estatística & dados numéricos , Neurite Óptica/epidemiologia , Doença de Alzheimer/patologia , Transtorno do Espectro Autista/patologia , Comorbidade , Conjuntos de Dados como Assunto , Humanos , Neurite Óptica/patologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-31762533

RESUMO

Brain imaging analysis on clinically acquired computed tomography (CT) is essential for the diagnosis, risk prediction of progression, and treatment of the structural phenotypes of traumatic brain injury (TBI). However, in real clinical imaging scenarios, entire body CT images (e.g., neck, abdomen, chest, pelvis) are typically captured along with whole brain CT scans. For instance, in a typical sample of clinical TBI imaging cohort, only ~15% of CT scans actually contain whole brain CT images suitable for volumetric brain analyses; the remaining are partial brain or non-brain images. Therefore, a manual image retrieval process is typically required to isolate the whole brain CT scans from the entire cohort. However, the manual image retrieval is time and resource consuming and even more difficult for the larger cohorts. To alleviate the manual efforts, in this paper we propose an automated 3D medical image retrieval pipeline, called deep montage-based image retrieval (dMIR), which performs classification on 2D montage images via a deep convolutional neural network. The novelty of the proposed method for image processing is to characterize the medical image retrieval task based on the montage images. In a cohort of 2000 clinically acquired TBI scans, 794 scans were used as training data, 206 scans were used as validation data, and the remaining 1000 scans were used as testing data. The proposed achieved accuracy=1.0, recall=1.0, precision=1.0, f1=1.0 for validation data, while achieved accuracy=0.988, recall=0.962, precision=0.962, f1=0.962 for testing data. Thus, the proposed dMIR is able to perform accurate CT whole brain image retrieval from large-scale clinical cohorts.

11.
J Digit Imaging ; 32(6): 987-994, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31197558

RESUMO

To understand potential orbital biomarkers generated from computed tomography (CT) imaging in patients with thyroid eye disease. This is a retrospective cohort study. From a database of an ongoing thyroid eye disease research study at our institution, we identified 85 subjects who had both clinical examination and laboratory records supporting the diagnosis of thyroid eye disease and concurrent imaging prior to any medical or surgical intervention. Patients were excluded if imaging quality or type was not amenable to segmentation. The images of 170 orbits were analyzed with the developed automated segmentation tool. The main outcome measure was to cross 25 CT structural metrics for each eye with nine clinical markers using a Kendall rank correlation test to identify significant relationships. The Kendall rank correlation test between automatically calculated CT metrics and clinical data demonstrated numerous correlations. Extraocular rectus muscle metrics, such as the average diameter of the superior, medial, and lateral rectus muscles, showed a strong correlation (p < 0.05) with loss of visual acuity and presence of ocular motility defects. Hertel measurements demonstrated a strong correlation (p < 0.05) with volumetric measurements of the optic nerve and other orbital metrics such as the crowding index and proptosis. Optic neuropathy was strongly correlated (p < 0.05) with an increase in the maximum diameter of the superior muscle. This novel method of automated imaging metrics may provide objective, rapid clinical information. This data may be useful for appreciation of severity of thyroid eye disease and recognition of risk factors of visual impairment from dysthyroid optic neuropathy from CT imaging.


Assuntos
Oftalmopatias/diagnóstico por imagem , Oftalmopatias/etiologia , Órbita/diagnóstico por imagem , Doenças da Glândula Tireoide/complicações , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Estudos de Coortes , Oftalmopatias/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Órbita/patologia , Estudos Retrospectivos , Doenças da Glândula Tireoide/patologia , Adulto Jovem
12.
Magn Reson Imaging ; 62: 70-77, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31247249

RESUMO

Deep learning has shown remarkable improvements in the analysis of medical images without the need for engineered features. In this work, we hypothesize that deep learning is complementary to traditional feature estimation. We propose a network design to include traditional structural imaging features alongside deep convolutional ones and illustrate this approach on the task of imaging-based age prediction in two separate contexts: T1-weighted brain magnetic resonance imaging (MRI) (N = 5121, ages 4-96, healthy controls) and computed tomography (CT) of the head (N = 1313, ages 1-97, healthy controls). In brain MRI, we can predict age with a mean absolute error of 4.08 years by combining raw images along with engineered structural features, compared to 5.00 years using image-derived features alone and 8.23 years using structural features alone. In head CT, we can predict age with a median absolute error of 9.99 years combining features, compared to 11.02 years with image-derived features alone and 13.28 years with structural features alone. These results show that we can complement traditional feature estimation using deep learning to improve prediction tasks. As the field of medical image processing continues to integrate deep learning, it will be important to use the new techniques to complement traditional imaging features instead of fully displacing them.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X , Adulto Jovem
13.
IEEE J Biomed Health Inform ; 23(5): 2052-2062, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30602428

RESUMO

Composite models that combine medical imaging with electronic medical records (EMR) improve predictive power when compared to traditional models that use imaging alone. The digitization of EMR provides potential access to a wealth of medical information, but presents new challenges in algorithm design and inference. Previous studies, such as Phenome Wide Association Study (PheWAS), have shown that EMR data can be used to investigate the relationship between genotypes and clinical conditions. Here, we introduce Phenome-Disease Association Study to extend the statistical capabilities of the PheWAS software through a custom Python package, which creates diagnostic EMR signatures to capture system-wide co-morbidities for a disease population within a given time interval. We investigate the effect of integrating these EMR signatures with radiological data to improve diagnostic classification in disease domains known to have confounding factors because of variable and complex clinical presentation. Specifically, we focus on two studies: First, a study of four major optic nerve related conditions; and second, a study of diabetes. Addition of EMR signature vectors to radiologically derived structural metrics improves the area under the curve (AUC) for diagnostic classification using elastic net regression, for diseases of the optic nerve. For glaucoma, the AUC improves from 0.71 to 0.83, for intrinsic optic nerve disease it increases from 0.72 to 0.91, for optic nerve edema it increases from 0.95 to 0.96, and for thyroid eye disease from 0.79 to 0.89. The EMR signatures recapitulate known comorbidities with diabetes, such as abnormal glucose, but do not significantly modulate image-derived features. In summary, EMR signatures present a scalable and readily applicable.


Assuntos
Diagnóstico por Computador/métodos , Diagnóstico por Imagem/métodos , Registros Eletrônicos de Saúde/classificação , Software , Humanos , Interpretação de Imagem Assistida por Computador , Nervo Óptico/diagnóstico por imagem , Doenças do Nervo Óptico/diagnóstico por imagem
14.
Med Image Comput Comput Assist Interv ; 11769: 104-111, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35098262

RESUMO

Diseases of the optic nerve cause structural changes observable through clinical computed tomography (CT) imaging. Previous work has shown that multi-atlas methods can be used to segment and extract volumetric measurements from the optic nerve, which are associated with visual disability and disease. In this work, we trained a weakly supervised convolutional neural network to learn optic nerve volumes directly, without segmentation. Furthermore, we explored the role of contextual electronic medical record (EMR) information, specifically ICD-9 codes, to improve optic nerve volume estimation. We constructed a merged network to combine data from imaging as well as EMR and demonstrated that context improved volume prediction, with a 15% increase in explained-variance ( R 2). Finally, we compared disease prediction models using volumes learned from multi-atlas, CNN, and contextual-CNN. We observed that the predicted optic nerve volume from merge-CNN had an AUC of 0.74 for classification of disease, as compared to an AUC of 0.54 using the multi-atlas metric. This is the first work to show that a contextually derived volume biomarker is more accurate than volume estimations through multi-atlas or weakly supervised image CNN. These results highlight the potential for image processing improvements by incorporating non-imaging data.

15.
J Med Imaging (Bellingham) ; 5(4): 044001, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30345325

RESUMO

The purpose of this study is to understand the phenotypes of thyroid eye disease (TED) through data derived from a multiatlas segmentation of computed tomography (CT) imaging. Images of 170 orbits of 85 retrospectively selected TED patients were analyzed with the developed automated segmentation tool. Twenty-five bilateral orbital structural metrics were used to perform principal component analysis (PCA). PCA of the 25 structural metrics identified the two most dominant structural phenotypes or characteristics, the "big volume phenotype" and the "stretched optic nerve phenotype," that accounted for 60% of the variance. Most of the subjects in the study have either of these characteristics or a combination of both. A Kendall rank correlation between the principal components (phenotypes) and clinical data showed that the big volume phenotype was very strongly correlated ( p - value < 0.05 ) with motility defects, and loss of visual acuity. Whereas, the stretched optic nerve phenotype was strongly correlated ( p - value < 0.05 ) with an increased Hertel measurement, relatively better visual acuity, and smoking. Two clinical subtypes of TED, type 1 with enlarged muscles and type 2 with proptosis, are recognizable in CT imaging. Our automated algorithm identifies the phenotypes and finds associations with clinical markers.

16.
Artigo em Inglês | MEDLINE | ID: mdl-29887660

RESUMO

Image registration involves identification of a transformation to fit a target image to a reference image space. The success of the registration process is vital for correct interpretation of the results of many medical image-processing applications, including multi-atlas segmentation. While there are several validation metrics employed in rigid registration to examine the accuracy of the method, non-rigid registrations (NRR) are validated subjectively in most cases, validated in offline cases, or based on image similarity metrics, all of which have been shown to poorly correlate with true registration quality. In this paper, we model the error for each target scan by expanding on the idea of Assessing Quality Using Image Registration Circuits (AQUIRC), which created a model for error "quality" associated with NRR. In this paper, we model the Dice similarity coefficient (DSC) error in the network, for a more interpretable measure. We test four functional models using a leave-one-out strategy to evaluate the relationship between edge DSC and circuit DSC: linear, quadratic, third order, or multiplicative models. We found that the quadratic model most accurately learns the NRR-DSC, with a median correlation coefficient of 0.58 with the true NRR-DSC, we call this the QUADRATIC (QUAlity of Dice in RegistrATIon Circuits) model. The QUADRATIC model is used for multi-atlas segmentation based on majority vote. Choosing the four best atlases predicted from the QUDRATIC model resulted in a 7% increase in the DSC between segmented image and true labels.

17.
J Digit Imaging ; 31(3): 304-314, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29725960

RESUMO

High-throughput, large-scale medical image computing demands tight integration of high-performance computing (HPC) infrastructure for data storage, job distribution, and image processing. The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has constructed a large-scale image storage and processing infrastructure that is composed of (1) a large-scale image database using the eXtensible Neuroimaging Archive Toolkit (XNAT), (2) a content-aware job scheduling platform using the Distributed Automation for XNAT pipeline automation tool (DAX), and (3) a wide variety of encapsulated image processing pipelines called "spiders." The VUIIS CCI medical image data storage and processing infrastructure have housed and processed nearly half-million medical image volumes with Vanderbilt Advanced Computing Center for Research and Education (ACCRE), which is the HPC facility at the Vanderbilt University. The initial deployment was natively deployed (i.e., direct installations on a bare-metal server) within the ACCRE hardware and software environments, which lead to issues of portability and sustainability. First, it could be laborious to deploy the entire VUIIS CCI medical image data storage and processing infrastructure to another HPC center with varying hardware infrastructure, library availability, and software permission policies. Second, the spiders were not developed in an isolated manner, which has led to software dependency issues during system upgrades or remote software installation. To address such issues, herein, we describe recent innovations using containerization techniques with XNAT/DAX which are used to isolate the VUIIS CCI medical image data storage and processing infrastructure from the underlying hardware and software environments. The newly presented XNAT/DAX solution has the following new features: (1) multi-level portability from system level to the application level, (2) flexible and dynamic software development and expansion, and (3) scalable spider deployment compatible with HPC clusters and local workstations.


Assuntos
Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Sistemas de Informação em Radiologia/instrumentação , Humanos , Armazenamento e Recuperação da Informação
18.
Proc SPIE Int Soc Opt Eng ; 101332017 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-28736470

RESUMO

Eye diseases and visual impairment affect millions of Americans and induce billions of dollars in annual economic burdens. Expounding upon existing knowledge of eye diseases could lead to improved treatment and disease prevention. This research investigated the relationship between structural metrics of the eye orbit and visual function measurements in a cohort of 470 patients from a retrospective study of ophthalmology records for patients (with thyroid eye disease, orbital inflammation, optic nerve edema, glaucoma, intrinsic optic nerve disease), clinical imaging, and visual function assessments. Orbital magnetic resonance imaging (MRI) and computed tomography (CT) images were retrieved and labeled in 3D using multi-atlas label fusion. Based on the 3D structures, both traditional radiology measures (e.g., Barrett index, volumetric crowding index, optic nerve length) and novel volumetric metrics were computed. Using stepwise regression, the associations between structural metrics and visual field scores (visual acuity, functional acuity, visual field, functional field, and functional vision) were assessed. Across all models, the explained variance was reasonable (R2 ~ 0.1-0.2) but highly significant (p < 0.001). Instead of analyzing a specific pathology, this study aimed to analyze data across a variety of pathologies. This approach yielded a general model for the connection between orbital structural imaging biomarkers and visual function.

19.
Proc SPIE Int Soc Opt Eng ; 101382017 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-28736474

RESUMO

We examine imaging and electronic medical records (EMR) of 588 subjects over five major disease groups that affect optic nerve function. An objective evaluation of the role of imaging and EMR data in diagnosis of these conditions would improve understanding of these diseases and help in early intervention. We developed an automated image-processing pipeline that identifies the orbital structures within the human eyes from computed tomography (CT) scans, calculates structural size, and performs volume measurements. We customized the EMR-based phenome-wide association study (PheWAS) to derive diagnostic EMR phenotypes that occur at least two years prior to the onset of the conditions of interest from a separate cohort of 28,411 ophthalmology patients. We used random forest classifiers to evaluate the predictive power of image-derived markers, EMR phenotypes, and clinical visual assessments in identifying disease cohorts from a control group of 763 patients without optic nerve disease. Image-derived markers showed more predictive power than clinical visual assessments or EMR phenotypes. However, the addition of EMR phenotypes to the imaging markers improves the classification accuracy against controls: the AUC improved from 0.67 to 0.88 for glaucoma, 0.73 to 0.78 for intrinsic optic nerve disease, 0.72 to 0.76 for optic nerve edema, 0.72 to 0.77 for orbital inflammation, and 0.81 to 0.85 for thyroid eye disease. This study illustrates the importance of diagnostic context for interpretation of image-derived markers and the proposed PheWAS technique provides a flexible approach for learning salient features of patient history and incorporating these data into traditional machine learning analyses.

20.
Artigo em Inglês | MEDLINE | ID: mdl-29392245

RESUMO

Multi-modal analyses of diseases of the optic nerve, that combine radiological imaging with other electronic medical records (EMR), improve understanding of visual function. We conducted a study of 55 patients with glaucoma and 32 patients with thyroid eye disease (TED). We collected their visual assessments, orbital CT imaging, and EMR data. We developed an image-processing pipeline that segmented and extracted structural metrics from CT images. We derive EMR phenotype vectors with the help of PheWAS (from diagnostic codes) and ProWAS (from treatment codes). Next, we performed a principal component analysis and multiple-correspondence analysis to identify their association with visual function scores. We find that structural metrics derived from CT imaging are significantly associated with functional visual score for both glaucoma (R2=0.32) and TED (R2=0.4). Addition of EMR phenotype vectors to the model significantly improved (p<1E-04) the R2 to 0.4 for glaucoma and 0.54 for TED.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA