RESUMO
The detection of single nucleotide polymorphisms (SNPs) is of increasing importance in many areas including clinical diagnostics, patient stratification for pharmacogenomics, and advanced forensic analysis. In the work reported, we apply a semiautomated system for solid-phase electrochemical melting curve analysis (éMCA) for the identification of the allele present at a specific SNP site associated with an increased risk of bone fracture and predisposition to osteoporosis. Asymmetric isothermal recombinase polymerase amplification using ferrocene labeled forward primers was employed to generate single stranded redox labeled amplicons. In a first approach to demonstrate the proof of concept of combining asymmetric RPA with solid-phase éMCA, a simplified system housing a multielectrode array within a polymeric microsystem, sandwiched between two aluminum plates of a heater device, was used. Sample manipulation through the microfluidic channel was controlled by a syringe pump, and an external Ag/AgCl reference electrode was employed. Individual electrodes of the array were functionalized with four different oligonucleotide probes, each probe equivalent in design with the exception of the middle nucleotide. The isothermally generated amplicons were allowed to hybridize to the surface-tethered probes and subsequently subjected to a controlled temperature ramp, and the melting of the duplex was monitored electrochemically. A clear difference between the fully complementary and a single mismatch was observed. Having demonstrated the proof-of-concept, a device for automated éMCA with increased flexibility to house diverse electrode arrays with internal quasi-gold reference electrodes, higher resolution, and broader melting temperature range was developed and exploited for the detection of SNP hetero/homozygosity. Using the optimized conditions, the system was applied to the identification of the allele present at an osteoporosis associated SNP site, rs2741856, in 10 real fingerprick/venous blood samples, with results validated using Sanger sequencing.
Assuntos
Osteoporose , Polimorfismo de Nucleotídeo Único , Humanos , Osteoporose/genética , Coleta de Amostras Sanguíneas , AlelosRESUMO
Detection and identification of single nucleotide polymorphisms (SNPs) have garnered increasing interest in the past decade, finding potential application in detection of antibiotic resistance, advanced forensic science, as well as clinical diagnostics and prognostics, moving toward the realization of personalized medicine. Many different techniques have been developed for genotyping SNPs, and ideally these techniques should be rapid, easy-to-use, cost-effective, flexible, scalable, easily automated, and requiring minimal end-user intervention. While high-resolution melting curve analysis has been widely used for the detection of SNPs, fluorescence detection does not meet many of the desired requirements, and electrochemical detection is an attractive alternative due to its high sensitivity, simplicity, cost-effectiveness, and compatibility with microfabrication. Herein, we describe the multiplexed electrochemical melting curve analysis of duplex surfaces tethered to electrodes of an array. In this approach, thiolated probes designed to hybridize to a DNA sequence containing the SNP to be interrogated are immobilized on gold electrodes. Asymmetric PCR using a ferrocene-labeled forward primer is used to generate this single-stranded redox-labeled PCR amplicon. Following hybridization with the probe immobilized on the electrode surface, the electrode array is exposed to a controlled ramping of temperature, with concomitant constant washing of the electrode array surface while simultaneously carrying out voltammetric measurements. The optimum position of the site complementary to the SNP site in the immobilized probe to achieve maximum differentiation in melting temperature between wild-type and single base mismatch, thus facilitating allelic discrimination, was determined and applied to the detection of a cardiomyopathy associated SNP.
RESUMO
Polyoxymetalates (POMs) ([SiW11O39{Sn(CH2)2CO)}]4- and [P2W17O61{Sn(CH2)2CO)}]6-) were used to modify dideoxynucleotides (ddNTPs) through amide bond formation, and applied to the multiplexed detection of single nucleotide polymorphisms (SNPs) in an electrochemical primer extension reaction. Each gold electrode of an array was functionalised with a short single stranded thiolated DNA probe, specifically designed to extend with the POM-ddNTP at the SNP site to be interrogated. The system was applied to the simultaneous detection of 4 SNPs within a single stranded 103-mer model target generated using asymmetric PCR, highlighting the potential of POM-ddNTPs for targeted, multiplexed SNP detection. The four DNA bases were successfully labelled with both ([SiW11O39{Sn(CH2)2CO)}]4- and [P2W17O61{Sn(CH2)2CO)}]6-), and [SiW11O39{Sn(CH2)2CO)}]4- demonstrated to be the more suitable due to its single oxidation peak, which provides an unequivocal signal. The POM-ddNTP enzymatically incorporated to the DNA anchored to the surface was visualised by AFM using gold coated mica. The developed assay has been demonstrated to be highly reproducible, simple to carry out and with very low non-specific background signals. Future work will focus on applying the developed platform to the detection of SNPs associated with rifampicin resistance in real samples from patients suffering from tuberculosis.