Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1296: 342307, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401927

RESUMO

Toluene, a volatile organic compound, may have adverse effects on the nervous and digestive system when inhaled over an extended period. The assessment of environmental toluene exposure can be effectively conducted by detecting hippuric acid (HA), a toluene metabolite. In this investigation, a molecularly imprinted electrochemical sensor was developed for HA detection, utilizing the synergistic effects of reduced graphene oxide (RGO) and a bimetallic organic skeleton known as CoNi-MOF. Initially, graphene oxide (GO) was synthesized using a modified Hummers' method, and RGO with better conductivity was achieved through reduction with ascorbic acid (AA). Subsequently, CoNi-MOF was introduced to enhance the material's electron transport capabilities further. The molecularly imprinted membrane was then prepared via electropolymerization to enable selective HA recognition. Under optimal conditions, the synthesized sensor exhibited accurate HA detection within a concentration range of 2-800 nM, with a detection limit of 0.97 nM. The sensor's selectivity was assessed using a selectivity coefficient, yielding an imprinting factor of 6.53. The method was successfully applied to the quantification of HA in urine, demonstrating a favorable recovery rate of 93.4%-103.9%. In conclusion, this study presents a practical platform for the detection of human metabolite detection.


Assuntos
Caramujo Conus , Grafite , Hipuratos , Impressão Molecular , Nanocompostos , Animais , Humanos , Limite de Detecção , Impressão Molecular/métodos , Grafite/química , Nanocompostos/química , Tolueno , Técnicas Eletroquímicas/métodos , Eletrodos
2.
J Chromatogr A ; 1714: 464579, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38113580

RESUMO

This study focuses on the extraction of ellagic acid (EA), a valued phenolic compound, from agricultural waste chestnut shell samples. A novel approach is introduced using a combination of boronic acid-modified molecularly imprinted polymer (ZIF@B@MIP) and a nanocomposite of graphene oxide-coated silver nanoparticles (GO@Ag@GSH) to enhance EA enrichment. ZIF@B@MIP precisely captured EA through boronate affinity-based molecular imprinting recognition. ZIF@B@MIP employs boronate affinity-based molecular imprinting recognition to precisely capture EA, while GO@Ag@GSH provides ample adsorption sites. The synergistic effect of ZIF@B@MIP and GO@Ag@GSH demonstrates excellent enrichment capability and selectivity for EA. High-performance liquid chromatography (HPLC) is employed for sensitive EA detection, achieving a maximum adsorption capacity of 46.25 mg g-1 and an imprinting factor of 3.01. The adsorption capacity to different structural analogue was investigated, and the selectivity coefficient was used to evaluate the selectivity, and its value was 1.16-3.01. The method successfully enriches EA in chestnut shell samples with a recovery rate of 95.6 %-110.1 %. This research presents an innovative approach for effective phenolic components enrichment from natural resources for pharmaceutical and biochemical applications.


Assuntos
Nanopartículas Metálicas , Impressão Molecular , Ácidos Borônicos/química , Prata , Ácido Elágico , Polímeros/química , Fenóis , Adsorção
3.
Environ Res ; 236(Pt 1): 116756, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37507037

RESUMO

Ribavirin (RBV) that is not metabolically released into the environment can contaminate the environment and even make organisms resistant to it. Therefore, it is of great significance to establish a simple and effective method for adsorbing RBV in the environment. In this study, a novel biochar-based boronate affinity molecularly imprinted polymers (C@H@B-MIPs) were synthesized. This is the first time that shaddock peel biochar sphere was used as a carrier for specific recognition of RBV. The polymerization conditions were optimized and the binding properties of RBV were studied. Benefiting from the synergistic effect of boronate affinity and surface imprinting, the C@H@B-MIPs showed rapid equilibrium kinetics of 15 min, high adsorption capacity of 18.30 mg g-1, and excellent reusability for RBV. The linear range was 0.05-100 mg L-1, and the detection limit was 0.023 mg L-1. This method was triumphant applied to the selective adsorption of RBV in food and water resources with recovery rates of 81.4-97.7%. This study provides a practical platform for the manufacture of efficient biomass-based adsorbents.


Assuntos
Impressão Molecular , Ribavirina , Impressão Molecular/métodos , Recursos Hídricos , Polímeros/química , Indicadores e Reagentes , Adsorção
4.
J Chromatogr A ; 1680: 463440, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36037577

RESUMO

We prepared an amino acid-immobilized copper ion-modified carbon-based adsorbent (C@TA@P@A-Cu) for selective bovine hemoglobin (BHb) adsorption in biological samples. Carbon nanoparticles were used as the matrix, and copper ions were attached to the amino acid-modified carbon nanoparticles as metal chelate complexes via immobilized metal affinity. BSA, Lyz, OVA, and HRP were chosen as reference proteins for further study. Furthermore, the synthesis conditions of adsorbents, SPE conditions, selectivity, competitivity, reproducibility, and reusability were extensively investigated. The results showed that the maximum adsorption capacity of C@TA@P@A-Cu microspheres for BHb under optimal conditions was 673.0 mg g-1. The addition of a TiO2 layer with an increased specific surface area of the adsorbent and the addition of poly-l-lysine (PLL) inhibited the adsorbent's binding ability to non-BHb proteins, but chelated Cu2+ increased the adsorbent's specific binding ability to BHb. Furthermore, after six adsorption-desorption cycles, the adsorbent has satisfactory reusability with no significant change in adsorption capacity. Furthermore, C@TA@P@A-Cu was successfully used to identify BHb from real blood samples, as confirmed by SDS-PAGE, and it is expected to have potential applications in protein purification and disease diagnosis.


Assuntos
Complexos de Coordenação , Cobre , Adsorção , Aminoácidos , Carbono , Cobre/química , Hemoglobinas/química , Concentração de Íons de Hidrogênio , Íons , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA