Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 343: 123197, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38128710

RESUMO

The diversity of colloidal types and the differences in the composite ratios in porous media are important factors governing the migration and biological risk of pathogenic microorganisms in the subsurface environment. In this study, E. coli O157:H7 was subjected to co-migration experiments with different compositions of the composite colloid montmorillonite (MMT)-Fe2O3, and the biomolecular response of E. coli under the action of colloids was analyzed by Raman spectroscopy to quantify the risk of E. coli under the action of composite colloids based on both. The results showed that Fe2O3 colloids inhibited E. coli migration mainly by electrostatic adsorption and reduced E. coli metabolism. MMT colloid inhibited E. coli migration mainly by blockage, and E. coli metabolism increased, and surface macromolecules decreased to reduce E. coli adhesion. MMT-Fe2O3 complex colloids inhibited migration through electrostatic attraction between the two and formation of cohesive colloids, with reduced E. coli metabolism and insignificant biomolecular response. It was briefly assessed that the composite colloids reduced E. coli risk less strongly than single colloids, stemming from the difference in the mechanism of influence and the actual need to consider colloid interactions. This conclusion can inform the management and control of pathogen risk in porous media environments.


Assuntos
Bentonita , Escherichia coli , Porosidade , Bentonita/química , Coloides/química , Adsorção
2.
Environ Sci Technol ; 57(40): 15123-15133, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37747805

RESUMO

Chromium (Cr) is a heavy metal with a high toxicity and pathogenicity. Microbial reduction is an effective strategy to remove Cr(VI) at contaminated sites but suffers from the low populations and activities of Cr-reducing microorganisms in soils. This study proposed an in situ sonoporation-mediated gene transfer approach, which improved soil Cr(VI) reduction performance by delivering exogenous Cr-transporter chrA genes and Cr-reducing yieF genes into soil microorganisms with the aid of ultrasound. Besides the increasing populations of Cr-resistant bacteria and elevated copy numbers of chrA and yieF genes after sonoporation-mediated gene transfer, three new Cr-reducing strains were isolated, among which Comamonas aquatica was confirmed to obtain Cr-resistant capability. In addition, sonoporation-mediated gene transfer was the main driving force significantly shaping soil microbial communities owing to the predominance of Cr-resistant microbes. This study pioneered and evidenced that in situ soil sonoporation-mediated gene transfer could effectively deliver functional genes into soil indigenous microbes to facilitate microbial functions for enhanced bioremediation, e.g., Cr-reduction in this study, showing its feasibility as a chemically green and sustainable remediation strategy for heavy metal contaminated sites.

3.
Ecotoxicol Environ Saf ; 261: 115107, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37290298

RESUMO

Under the influence of different types of disinfectants and disinfection environments, the removal level of pathogens and the formation potential of disinfection by-products (DBPs) will have a dual impact on the groundwater environment. The key points for sustainable groundwater safety management are how to balance the positive and negative relationship and formulate a scientific disinfection model in combination with risk assessment. In this study, the effects of sodium hypochlorite (NaClO) and peracetic acid (PAA) concentrations on pathogenic E. coli and DBPs were investigated using static-batch and dynamic-column experiments, as well as the optimal disinfection model for groundwater risk assessment was explored using quantitative microbial risk assessment and disability-adjusted life years (DALYs) models. Compared to static disinfection, deposition and adsorption were the dominant factors causing E. coli migration at lower NaClO levels of 0-0.25 mg/L under dynamic state, while disinfection was its migration factor at higher NaClO levels of 0.5-6.5 mg/L. In contrast, E. coli removed by PAA was the result of the combined action of deposition, adsorption, and disinfection. The disinfection effects of NaClO and PAA on E. coli differed under dynamic and static conditions. At the same NaClO level, the health risk associated with E. coli in groundwater was higher, whereas, under the same PAA conditions, the health risk was lower. Under dynamic conditions, the optimal disinfectant dosage required for NaClO and PAA to reach the same acceptable risk level was 2 and 0.85 times (irrigation) or 0.92 times (drinking) of static disinfection, respectively. The results may help prevent the misuse of disinfectants and provide theoretical support for managing twin health risks posed by pathogens and DBPs in water treatment.


Assuntos
Desinfetantes , Água Subterrânea , Purificação da Água , Desinfecção/métodos , Escherichia coli , Desinfetantes/farmacologia , Ácido Peracético , Purificação da Água/métodos , Medição de Risco
4.
Environ Pollut ; 323: 121282, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796664

RESUMO

The vadose zone is a critical zone for microbial entry into the subsurface environment, and various types of inorganic and organic colloids can affect the migration of pathogenic bacteria. In the study, we explored the migration behavior of Escherichia coli O157:H7 with humic acids (HA), iron oxides (Fe2O3) or their mixture, uncovering their migration mechanisms in the vadose zone. The effect of complex colloids on the physiological properties of E. coli O157:H7 was analyzed based on the measured particle size, zeta potential and contact angle. HA colloids significantly promoted the migration of E. coli O157:H7, where Fe2O3 was opposite. The migration mechanism of E. coli O157:H7 with HA and Fe2O3 is obviously different. Multiple colloids dominated by organic colloid will further highlight its promoting effect on E. coli O157:H7 under the guidance of electrostatic repulsion due to the influence of colloidal stability. Multiple colloids dominated by metallic colloid will inhibit the migration of E. coli O157:H7 under the control of capillary force due to the restriction of contact angle. The risk of secondary release of E. coli O157:H7 can be effectively reduced when the ratio of HA/Fe2O3 is ≥ 1. Combining this conclusion with the distribution characteristics of soil in China, an attempt was made to analyse the migration risk of E. coli O157:H7 on a national scale. In China, from north to south, the migration capacity of E. coli O157:H7 gradually decreased, and the risk of secondary release gradually increased. These results provide ideas for the subsequent study of the effect of other factors on the migration of pathogenic bacteria on a national scale and provide risk information about soil colloids for the construction of pathogen risk assessment model under comprehensive conditions in the future.


Assuntos
Escherichia coli O157 , Escherichia coli O157/fisiologia , Porosidade , Solo , Substâncias Húmicas , Coloides , Contagem de Colônia Microbiana
5.
Artigo em Inglês | MEDLINE | ID: mdl-36293904

RESUMO

Arsenic (As) contamination in groundwater is a worldwide concern for drinking water safety. Environmental changes and anthropogenic activities are making groundwater vulnerable in Pakistan, especially in Southern Punjab. This study explores the distribution, hydrogeochemical behavior, and pathways of As enrichment in groundwater and discusses the corresponding evolution mechanism, mobilization capability, and health risks. In total, 510 groundwater samples were collected from three tehsils in the Punjab province of Pakistan to analyze As and other physiochemical parameters. Arsenic concentration averaged 14.0 µg/L in Vehari, 11.0 µg/L in Burewala, and 13.0 µg/L in Mailsi. Piper-plots indicated the dominance of Na+, SO42-, Ca2+, and Mg2+ ions in the groundwater and the geochemical modeling showed negative saturation indices with calcium carbonate and salt minerals, including aragonite (CaCO3), calcite (CaCO3), dolomite (CaMg(CO3)2), and halite (NaCl). The dissolution process hinted at their potential roles in As mobilization in groundwater. These results were further validated with an inverse model of the dissolution of calcium-bearing mineral, and the exchange of cations between Ca2+ and Na+ in the studied area. Risk assessment suggested potential carcinogenic risks (CR > 10-4) for both children and adults, whereas children had a significant non-carcinogenic risk hazard quotient (HQ > 1). Accordingly, children had higher overall health risks than adults. Groundwater in Vehari and Mailsi was at higher risk than in Burewala. Our findings provide important and baseline information for groundwater As assessment at a provincial level, which is essential for initiating As health risk reduction. The current study also recommends efficient management strategies for As-contaminated groundwater.


Assuntos
Arsênio , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Criança , Adulto , Humanos , Arsênio/análise , Água Potável/análise , Cálcio , Cloreto de Sódio , Paquistão , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Carbonato de Cálcio
6.
Environ Int ; 161: 107130, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35134712

RESUMO

To bolster freshwater supply, artificial groundwater recharge with recycled water has increasingly attracted research attentions and interests. However, artificial groundwater recharge has potential risks to groundwater quality, as recharge water disinfection is frequently used for pathogen inactivation and causes the concerns of disinfection by-products (DBPs). Colloid supplement is a good approach solving this problem, but its roles in mitigating DBPs remains unclear. In this study, we collected 20 groundwater and soil samples from a field-scale groundwater recharge project, and explored the impacts of silica colloids on chloroform migration and groundwater bacterial communities during the recharge process. Water physicochemical variables changed along the recharge time, and colloid supplement significantly reduced chloroform formation and slowed its migration in groundwater. Bacterial communities in groundwater, river water and recharge water were significantly different. Gammaproteobacteria in recharge water (71.7%) was more abundant than in river water (30.5%) and groundwater (33.5%), while Actinobacteria dominated groundwater (40.6%). After recharge, Gammaproteobacteria increased more with colloid supplement (75.7%) than without (52.6%), attributing to its dominance in soils (74.6%). Our results suggested more bacterial lineages released from soils into aquifer by silica colloid supplement, owing to the competitive adsorption encouraging microbial transfer, especially Gram-negative bacteria. Our findings unraveled the effects of colloid supplement on chloroform formation and migration during artificial groundwater recharge, which consequently altered groundwater bacterial communities, and offered valuable suggestions for the safety management of DBPs in aquifer recharge.


Assuntos
Clorofórmio , Água Subterrânea , Coloides , Desinfecção , Água Doce
7.
Geosci Front ; 13(6): 101346, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37521131

RESUMO

The global outbreak of coronavirus infectious disease-2019 (COVID-19) draws attentions in the transport and spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in aerosols, wastewater, surface water and solid wastes. As pathogens eventually enter the subsurface system, e.g., soils in the vadose zone and groundwater in the aquifers, they might survive for a prolonged period of time owing to the uniqueness of subsurface environment. In addition, pathogens can transport in groundwater and contaminate surrounding drinking water sources, possessing long-term and concealed risks to human society. This work critically reviews the influential factors of pathogen migration, unravelling the impacts of pathogenic characteristics, vadose zone physiochemical properties and hydrological variables on the migration of typical pathogens in subsurface system. An assessment algorithm and two rating/weighting schemes are proposed to evaluate the migration abilities and risks of pathogens in subsurface environment. As there is still no evidence about the presence and distribution of SARS-CoV-2 in the vadose zones and aquifers, this study also discusses the migration potential and behavior of SARS-CoV-2 viruses in subsurface environment, offering prospective clues and suggestions for its potential risks in drinking water and effective prevention and control from hydrogeological points of view.

8.
Environ Sci Pollut Res Int ; 27(13): 15068-15082, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32065366

RESUMO

To investigate co-transport behavior of ammonium and colloids in saturated porous media under different hydrochemical conditions, NH4+ was selected as the target contaminant, and silicon and humic acid (HA) were selected as typical organic and inorganic colloids in groundwater. Column experiments were then conducted to investigate the transport of NH4+ colloids under various hydrochemical conditions. The results showed that because of the different properties of colloidal silicon and HA after combining with NH4+, the co-transport mechanism became significantly different. During transport by the NH4+-colloid system, colloidal silicon occupied the adsorption sites on the medium surface to promote the transport of NH4+, while humic acid (HA) increased the number of adsorption sites of the medium to hinder the transport of NH4+. The co-transport of NH4+ and colloids is closely related to hydrochemical conditions. In the presence of HA, competitive adsorption and morphological changes of HA caused NH4+ to be more likely to be transported at a higher ionic strength (IS = 0.05 m, CaCl2) and alkalinity (pH = 9.3). In the presence of colloidal silicon, blocking action caused the facilitated transport to be dependent on higher ionic strength and acidity (pH = 4.5), causing the recovery of NH4+ to improve by 7.99%, 222.25% (stage 1), and 8.63%, respectively. Moreover, transport increases with the colloidal silicon concentrations of 20 mg/L then declines at 40 mg/L, demonstrating that increased concentrations will lead to blocking and particle aggregation, resulting in delayed release in the leaching stage. Graphical abstract.


Assuntos
Compostos de Amônio , Água Subterrânea , Adsorção , Coloides , Substâncias Húmicas/análise , Porosidade
9.
Environ Pollut ; 259: 113861, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31918138

RESUMO

Because of the complexity of contaminants infiltrating groundwater, it is necessary to study the co-transport of contaminants in the vadose and saturated zones. To investigate the role of inorganic colloids in the transport of biocolloids through porous media, a series of experiments were performed using columns packed with sand. The Escherichia coli phage (E. coli phage) was used as the model virus and silica as the model colloid in this study. The model virus exhibited a higher degree of attachment when compared with silica under similar experimental conditions. Under unsaturated flow conditions, the degree of virus retention was higher than in the corresponding saturated flow case, regardless of the presence of silica. Mass recovery and breakthrough curve data showed that silica hindered virus transport in saturated porous media. The model virus exhibited a higher degree of retention in the presence of silica. This could be related to pore structure changes caused by aggregated virus-silica particles located within the pores of the sand. Conversely, the suspended virus retained at the air-water interface provided new retention sites for other colloids; the retention was observed to be higher in the presence of colloidal silica in the saturated columns. In the corresponding unsaturated experiments, silica was observed to play the opposite function with respect to virus transport, which demonstrated that silica facilitated virus transport in the presence of unsaturated porous media. Capillary forces were stronger than the virus-silica interactions, and inhibited the aggregation of particles. Suspended silica competes with the virus for sorption sites because of a high affinity for the air-water interface. This competition inhibits virus retention by electrostatic repulsion of like-charged particles, and concomitantly facilitates virus transport under unsaturated conditions.


Assuntos
Bacteriófagos , Nanopartículas , Dióxido de Silício , Bacteriófagos/fisiologia , Coloides/metabolismo , Nanopartículas/metabolismo , Nanopartículas/virologia , Porosidade , Dióxido de Silício/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA