Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Res ; : 119159, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38754605

RESUMO

Triphenyl phosphate (TPhP) is an organophosphate flame retardant that is widely used in many commercial products. The United States Environmental Protection Agency has listed TPhP as a priority compound that requires health risk assessment. We previously found that TPhP could accumulate in the placentae of mice and impair birth outcomes by activating peroxisome proliferator-activated receptor gamma (PPARγ) in the placental trophoblast. However, the underlying mechanism remains unknown. In this study, we used a mouse intrauterine exposure model and found that TPhP induced preeclampsia (PE)-like symptoms, including new on-set gestational hypertension and proteinuria. Immunofluorescence analysis showed that during placentation, PPARγ was mainly expressed in the labyrinth layer and decidua of the placenta. TPhP significantly decreased placental implantation depth and impeded uterine spiral artery remodeling by activating PPARγ. The results of the in vitro experiments confirmed that TPhP inhibited extravillous trophoblast (EVT) cell migration and invasion by activating PPARγ and inhibiting the PI3K-AKT signaling pathway. Overall, our data demonstrated that TPhP could activate PPARγ in EVT cells, inhibit cell migration and invasion, impede placental implantation and uterine spiral artery remodeling, then induce PE-like symptom and impair birth outcomes. Although the exposure doses used in this study was several orders of magnitude higher than human daily intake, our study highlights the placenta as a potential target organ of TPhP worthy of further research.

2.
Acta Pharm Sin B ; 14(1): 304-318, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38261820

RESUMO

Lipotoxicity is a pivotal factor that initiates and exacerbates liver injury and is involved in the development of metabolic-associated fatty liver disease (MAFLD). However, there are few reported lipotoxicity inhibitors. Here, we identified a natural anti-lipotoxicity candidate, HN-001, from the marine fungus Aspergillus sp. C1. HN-001 dose- and time- dependently reversed palmitic acid (PA)-induced hepatocyte death. This protection was associated with IRE-1α-mediated XBP-1 splicing inhibition, which resulted in suppression of XBP-1s nuclear translocation and transcriptional regulation. Knockdown of XBP-1s attenuated lipotoxicity, but no additional ameliorative effect of HN-001 on lipotoxicity was observed in XBP-1s knockdown hepatocytes. Notably, the ER stress and lipotoxicity amelioration was associated with PLA2. Both HN-001 and the PLA2 inhibitor MAFP inhibited PLA2 activity, reduced lysophosphatidylcholine (LPC) level, subsequently ameliorated lipotoxicity. In contrast, overexpression of PLA2 caused exacerbation of lipotoxicity and weakened the anti-lipotoxic effects of HN-001. Additionally, HN-001 treatment suppressed the downstream pro-apoptotic JNK pathway. In vivo, chronic administration of HN-001 (i.p.) in mice alleviated all manifestations of MAFLD, including hepatic steatosis, liver injury, inflammation, and fibrogenesis. These effects were correlated with PLA2/IRE-1α/XBP-1s axis and JNK signaling suppression. These data indicate that HN-001 has therapeutic potential for MAFLD because it suppresses lipotoxicity, and provide a natural structural basis for developing anti-MAFLD candidates.

3.
Immun Inflamm Dis ; 11(8): e966, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37647437

RESUMO

INTRODUCTION: Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by hemolytic anemia, bone marrow failure, thrombophilia. COVID-19, caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with many variants including Omicron. METHODS: This study collected demographic and clinical data of 20 PNH patients with SARS-CoV-2 Omicron infection. RESULTS: They all were with high disease activity, and LDH level exceeded any documented since the diagnosis of PNH, and those reported in the literature for previously stable treatment with complement inhibitors. D-dimer level elevated in 10 patients. 2 patients developed mild pulmonary artery hypertension. Glomerular filtration rate declined in 5 patients. 1 patient developed acute renal failure and underwent hemodialysis. Anemia and hemolysis were improved in 5 patients treated with eculizumab. CONCLUSIONS: Hemolytic exacerbation of PNH with COVID-19 is severe and eculizumab may be an effective treatment.


Assuntos
COVID-19 , Hemoglobinúria Paroxística , Hemólise , Humanos , COVID-19/complicações , População do Leste Asiático , Hemoglobinúria Paroxística/complicações , Hemoglobinúria Paroxística/tratamento farmacológico , SARS-CoV-2
4.
J Oncol ; 2023: 6017852, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873740

RESUMO

Background: Acute myeloid leukemia (AML) is a malignant clonal disease of the myeloid hematopoietic system. Clinically, standard treatment options include conventional chemotherapy as well as hematopoietic stem cell transplantation. Among them, chemotherapy has a remission rate of 60% to 80% and nearly 50% relapse in consolidation therapy. Some patients have a poor prognosis due to the presence of unfavorable factors such as advanced age, hematologic history, poor prognosis karyotype, severe infection, and organ insufficiency, which cannot tolerate or are not suitable for standard chemotherapy regimens, and scholars have tried to find new treatment strategies to improve this situation. In the pathogenesis and treatment of leukemia, epigenetics has received attention from experts and scholars. Objective: To investigate the relationship between OLFML2A overexpression and AML patients. Methods: From The Cancer Genome Atlas, researchers used the data of OLFML2A gene to analyze and study the pan-cancer using R language and then divided the high and low levels of this protein into two groups to study its relationship with the clinical characteristics of the disease. The relationship between the high levels of OLFML2A and various clinical features of the disease was studied with emphasis on the relationship between the high levels of OLFML2A and various clinical features of the disease. A multidimensional Cox regression analysis was also performed to study the factors affecting patient survival. The correlation between OLFML2A expression and immune infiltration through the immune microenvironment was analyzed. The researchers then conducted a series of studies to analyze the data collected in the study. The focus was on the relationship between the high levels of OLFML2A and immune infiltration. Gene ontology analysis was also performed to study the interactions between the different genes associated with this protein. Results: According to the pan-cancer analysis, OLFML2A was differentially expressed in different tumors. More importantly, the analysis of OLFML2A in the TCGA-AML database revealed that OLFML2A was highly expressed in AML. The researchers found that the high levels of OLFML2A were associated with different clinical features of the disease, and that the expression of the protein was different in different groups. Those patients with the high levels of OLFML2A were found to have substantially longer survival times compared to those with low-protein levels. Conclusions: The OLFML2A gene is able to act as a molecular indicator involved in the diagnosis, prognosis, and immune process of AML. It improves the molecular biology prognostic system of AML, provides help for the selection of AML treatment options, and provides new ideas for future biologically targeted therapy of AML.

5.
Clin Exp Med ; 23(6): 2619-2627, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36645546

RESUMO

Eltrombopag (EPAG) can improve the efficacy of immunosuppressive therapy (IST) consisting of antithymocyte immunoglobulin (ATG) and cyclosporin in severe aplastic anemia (SAA) patients. This study explored whether patients with SAA could benefit from continuous usage of EPAG beyond 6 months.Seventy-four treatment-naive Chinese patients with SAA were administrated with rabbit ATG-based IST plus EPAG for 6 months. Patients not achieving complete remission (CR) at 6 months were treated with EPAG for another 6 months.At 1, 3, 6 and 12 months after IST, the cumulative response rates were 31%, 61%, 82% and 90%, and the cumulative CR rates were 0, 14%, 27% and 45%, respectively. The cumulative effect curve showed that 93% and 53% of all remission and CR occurred within 6 months, while 98% and 83% of all remission and CR occurred within 12 months. Thirty-seven percent of patients (11 of 30) with partial remission (PR) at 6 months continuously exposed to EPAG improved to CR within 3 (1-5) months of the extended median time. Six patients failing at 6 months continued to use EPAG. Three patients showed improved responses with an extended median time of 6 (1-6) months. The 2-year event-free survival (EFS) was better in those continuing with EPAG (89% vs. 49%, P = 0.006) for patients with PR or non-remission at 6 months.Continuous administration with EPAG could improve the hematologic response and EFS in patients without achieving CR at 6 months.This trial has been registered at the Chinese Clinical Trial Registry (ChiCTR2100045895).


Assuntos
Anemia Aplástica , Imunossupressores , Animais , Coelhos , Humanos , Imunossupressores/uso terapêutico , Anemia Aplástica/tratamento farmacológico , Resultado do Tratamento , Ciclosporina/uso terapêutico
6.
Stem Cells Int ; 2022: 6544514, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813890

RESUMO

Human gingiva-derived mesenchymal stem cells (GMSCs) are isolated from the gingival propria with promising regenerative, immunomodulatory, and anti-inflammatory properties. Recently, several studies, including ours, have found that GMSCs have the therapeutic potentials of nerve regeneration and skin disorders in various types such as the cell itself, cell-free conditioned medium, or extracellular vesicles (EVs). However, the mechanobiological behavior of GMSCs is closely related to the culture conditions. Therefore, the purpose of this study was to evaluate the function of human GMSCs on imiquimod- (IMQ-) induced murine psoriasis-like skin inflammation in two-dimensional (2D) and three-dimensional (3D) culture conditions. Here, we isolated and characterized GMSCs in 2D and 3D culture conditions and found that GMSCs in 2D and 3D infusion can significantly ameliorate the IMQ-induced murine psoriasis-like skin inflammation, reduce the levels of Th1- and Th17-related cytokines IFN-γ, TNF-α, IL-6, IL-17A, IL-17F, IL-21, and IL-22, and upregulate the percentage of spleen CD25+CD3+ T cells while downregulate the percentage of spleen IL-17+CD3+ T cells. In summary, our novel findings reveal that GMSCs in 2D and 3D infusion may possess therapeutic effects in the treatment of psoriasis.

7.
Can J Infect Dis Med Microbiol ; 2022: 5469236, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873363

RESUMO

Helicobacter pylori (H. pylori) is the main pathogenic factor of gastric cancer, chronic gastritis, and other gastric diseases. It has been found that Callicarpa nudiflora (CN) as an air-dried leaf extract has a broad-spectrum antibacterial effect. This study aims to examine the effect of CN on H. pylori-infected GES-1 cells in vitro and elucidate its underlying mechanism by extracting active ingredients from air-dried leaves. GES-1 cells were cocultured with HPSS1 at MOI = 100 : 1 and treated with different concentrations of CN (100 and 200 µg/ml). Results showed that CN can significantly reduce cellular LDH leakage and attenuate H. pylori-induced cell apoptosis and ROS production in GSE-1 cells, so as to protect gastric epithelial cells from damage by H. pylori. CN can also inhibit the secretion of inflammatory factors, such as TNF-α, IL-1ß, IL-6, and IL-8. After CN treatment, the expression levels of active caspase-1, PYCARD, and NLRP3 were remarkably decreased in the treatment groups compared with the model group. To sum up, CN is highly protective against H. pylori-induced cell damage and apoptosis; CN can depress NLRP3 inflammasome activation and ROS production via the ROS/NLRP3/caspase-1/IL-1ß signaling axis to suppress H. pylori-triggered inflammatory response and pyroptosis.

8.
J Transl Med ; 19(1): 356, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34407839

RESUMO

Inflammatory bowel diseases (IBD), mainly comprising ulcerative colitis (UC) and Crohn's Disease, are most often a polygenic disorder with contributions from the intestinal microbiome, defects in barrier function, and dysregulated host responses to microbial stimulation. Strategies that target the microbiota have emerged as potential therapies and, of these, probiotics have gained the greatest attention. Herein, we isolated a strain of Lactobacillus paracasei R3 (L.p R3) with strong biofilm formation ability from infant feces. Interestingly, we also found L.p R3 strain can ameliorate the general symptoms of murine colitis, alleviate inflammatory cell infiltration and inhibit Th17 while promote Treg function in murine dextran sulfate sodium (DSS)-induced colitis. Overall, this study suggested that L.p R3 strain significantly improves the symptoms and the pathological damage of mice with colitis and influences the immune function by regulating Th17/Treg cell balance in DSS-induced colitis in mice.


Assuntos
Colite , Lacticaseibacillus paracasei , Animais , Colite/induzido quimicamente , Colo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Células Th17
9.
Ann Transl Med ; 9(12): 1016, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34277816

RESUMO

BACKGROUND: Beta-1 syntrophin (SNTB1) is an intracellular scaffold protein that provides a platform for the formation of signal transduction complexes, thereby modulating and coordinating various intracellular signaling events and crucial cellular processes. However, the physiological role of SNTB1 is poorly understood. This study aims to explore the role of SNTB1 in colorectal cancer (CRC) tumorigenesis and progression, with particular focus on SNTB1's expression pattern, clinical relevance, and possible molecular mechanism in CRC development. METHODS: SNTB1 expression was analyzed in both clinical tissues and The Cancer Genome Atlas (TCGA) database. Real-time polymerase chain reaction (PCR), Western blot, and immunohistochemical assays were used to detect the relative mRNA and protein levels of SNTB1. Statistical analysis was performed to examine the correlation between SNTB1 expression and the clinicopathological characteristics of patients with CRC. Bioinformatics gene set enrichment analysis (GSEA), Western blot, luciferase assay, and agonist recovery assays were conducted to evaluate the relevance of SNTB1 and the ß-catenin signaling pathway in CRC. A flow cytometry-based Hoechst 33342 efflux assay was applied to assess the proportion of the side population (SP) within total CRC cells. RESULTS: Elevated levels of SNTB1 were identified in CRC tissues and cell lines. The elevation of SNTB1 was positively correlated with the degree of malignancy and poor prognosis in CRC. We further revealed that, by modulating the ß-catenin signaling pathway, silencing SNTB1 expression suppressed tumor growth and cancer stemness in vitro, as well as tumorigenesis in vivo. CONCLUSIONS: These findings suggest that SNTB1 plays a crucial role in colorectal tumorigenesis and progression by modulating ß-catenin signaling and the stemness maintenance of cancer cells.

10.
Cell Cycle ; 20(16): 1552-1560, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34288813

RESUMO

WT1 has been reported to function as an oncogene and a tumor suppressor in acute myeloid leukemia (AML). The molecular mechanisms have not yet been fully elucidated. Here, we report that p53, served as a tumor suppressor, plays a critical role in regulating the function of WT1 in AML. For details, we performed a meta-analysis on 1131 AML cases, showing that WT1 gene mutation and TP53 gene exhibited a mutually exclusive predisposition in AML. p53 can be recruited to the promoter region of WT1's target genes to modulate their expression by physically interacting with WT1. The AML-derived p53 mutation (p53R248Q) can disrupt the interaction between WT1 and p53, resulting in the loss of modulation of WT1's target genes. Furthermore, wild-type p53 maintained the anti-proliferation activity of WT1 in AML cells. In contrast, WT1 promoted AML cell proliferation in the absence of p53 (or mutated p53). In conclusion, we demonstrated a novel explanation of the controversial function of WT1 in AML. These results provided a mechanism by which WT1 inhibited AML cell proliferation in a p53-dependent manner.


Assuntos
Proliferação de Células , Leucemia Mieloide Aguda/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas WT1/metabolismo , Sítios de Ligação , Regulação Leucêmica da Expressão Gênica , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mutação , Regiões Promotoras Genéticas , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteínas WT1/genética
11.
J Cancer ; 12(1): 150-162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391411

RESUMO

Anaplastic lymphoma kinase (ALK) has been described in a range of human cancers and is involved in cancer initiation and progression via activating multiple signaling pathways, such as the PI3K-AKT, CRKL-C3G, MEKK2/3-MEK5-ERK5, JAK-STAT and MAPK signal pathways. Recently ALK and LTK ligand 1 (ALKAL1) also named "augmentor-ß" or "FAM150A" is identified as a potent activating ligands for human ALK that bind to the extracellular domain of ALK. However, due to its poor stability, the mechanisms of ALKAL1 underlying the tumor progression in the human cancers including colorectal cancer have not been well documented. Herein, ALKAL1 expression was evaluated by RNA sequencing datasets from The Cancer Genome Atlas (TCGA) of 625 cases colorectal cancer, immunohistochemical analysis of 377 cases colorectal cancer tissues, and Western blotting even Real-time PCR of 10 pairs of colorectal cancer tissues and adjacent normal tissues, as well as 8 colorectal cancer cell lines. Statistical analysis was performed to explore the correlation between ALKAL1 expression and clinicopathological features in colorectal cancer. Univariate and multivariate Cox regression analysis were performed to examine the association between ALKAL1 expression and overall survival. In vitro and in vivo assays were performed to assess the biological roles of ALKAL1 in colorectal cancer. Gene set enrichment analysis (GSEA), Western blotting and luciferase assays were used to identify the underlying signal pathway involved in the tumor progression role of ALKAL1. As a result, we showed that ALKAL1 was upregulated in colorectal cancer tissues and cell lines. Upregulation of ALKAL1 correlated with tumor malignancy and poor prognosis in colorectal cancer. ALKAL1 silencing inhibited tumorigenesis, metastasis and invasion of colorectal cancer cells, and inhibited SHH signaling pathway, which is essential for ALKAL1 induced migration. Our findings reveal a new mechanism by which ALKAL1 participates in colorectal cancer migration and invasion via activating the SHH signaling pathway.

12.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 28(4): 1326-1331, 2020 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-32798421

RESUMO

OBJECTIVE: To investigate the clinical characteristics, laboratorial and bone marrow pathological features of primary thrombocytopenia (ET) patients with different mutations of CALR, JAK2 and MPL genes. METHODS: The chinical data of 120 cases of ET in Jiangsu provincial people's hospital/ The First Affiliated Hospital of Nanjing Medical University from January 2015 to December 2017 were collected and analyzed, including 76 cases with JAK2 gene mutation, 40 cases with CALR gene mutation, 2 cases with MPL gene mutations, 2 cases without gene mutation. RESULTS: Among the ET patients, compared with the JAK2 gene mutation, CALR gene mutation showed statistically significant deareament of white blood cells and hemoglobin (P=0.001, P=0.01) and the male platelets in CALR group showed significant increament (P=0.04). Fourthermore, the average number of megakaryocytes and its cluster numbers in each hight power field of vision showed statistically significant decreament in CALR group as compared with JAK2 group (P=0.001, P=0.001), and thrombotic events in CALR group were signicantly lower than those in JAK2 group (7.5% vs 18.4%) (P=0.03). CONCLUSION: Mutations of CALR, JAK2 have different clinical characteristics and blood pathological changes of Chinese ET patients, and their clinical significance is worth to explore.


Assuntos
Trombocitemia Essencial , Medula Óssea , Calreticulina/genética , China , Humanos , Janus Quinase 2/genética , Masculino , Mutação , Receptores de Trombopoetina/genética
13.
Exp Cell Res ; 395(1): 112170, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32682783

RESUMO

Colorectal cancer is the second leading cause of cancer mortality worldwide with poor prognosis and high recurrence. Aberrant Wnt/ß-catenin signaling promotes oncogenesis by transcriptional activation of c-Myc and its downstream signals. EDAR is characterized as an important effector of canonical Wnt signaling in developing skin appendages, but the interplay between EDAR and Wnt signaling in tumorigenesis and progression remains to be elucidated. In this study, we revealed that EDAR expression is prevalently elevated in colorectal cancer tissues compared with normal tissues. Further analysis suggests there is a strict correlation between EDAR expression and colorectal cancer progression. EDAR silencing by shRNA in colorectal cancer cells showed proliferative suppression via retarding cell cycle at G1 phase. Xenograft mice transplanted with shEDAR-transduced tumor cells significantly alleviated tumor burden in comparison with control mice. Furthermore, downregulation of EDAR was accompanied by reduction of ß-catenin, c-Myc and other G1 cell cycle regulators, while ß-catenin agonist restored the expression of these proteins and overrode the proliferative block induced by EDAR knockdown. These findings indicate that EDAR functions as a component of Wnt/ß-catenin signaling pathway, and is a potential modulator in colorectal carcinogenesis.


Assuntos
Proliferação de Células/fisiologia , Neoplasias do Colo , Neoplasias Colorretais/patologia , Recidiva Local de Neoplasia/metabolismo , Receptores da Ectodisplasina/metabolismo , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Recidiva Local de Neoplasia/genética , Receptores da Ectodisplasina/genética , Via de Sinalização Wnt/genética
14.
Mol Cancer ; 19(1): 98, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32473645

RESUMO

BACKGROUND: Anti-angiogenic therapy represents a promising strategy for non-small-cell lung cancer (NSCLC) but its application in lung squamous cell carcinoma (SQC) is limited due to the high-risk adverse effects. Accumulating evidence indicates that long noncoding RNAs (lncRNAs) mediate in tumor progression by participating in the regulation of VEGF in NSCLC, which might guide the development of new antiangiogenic strategies. METHODS: Differential lncRNA expression in SQC was analyzed in AE-meta and TCGA datasets, and further confirmed in lung cancer tissues and adjacent normal tissues with RT-qPCR and in-situ hybridization. Statistical analysis was performed to evaluate the clinical correlation between LINC00173.v1 expression and survival characteristics. A tube formation assay, chick embryo chorioallantoic membrane assay and animal experiments were conducted to detect the effect of LINC00173.v1 on the proliferation and migration of vascular endothelial cells and tumorigenesis of SQC in vivo. Bioinformatics analysis, RNA immunoprecipitation and luciferase reporter assays were performed to elucidate the downstream target of LINC00173.v1. The therapeutic efficacy of antisense oligonucleotide (ASO) against LINC00173.v1 was further investigated in vivo. Chromatin immunoprecipitation and high throughput data processing and visualization were performed to identify the cause of LINC00173.v1 overexpression in SQC. RESULTS: LINC00173.v1 was specifically upregulated in SQC tissues, which predicted poorer overall and progression-free survival in SQC patients. Overexpression of LINC00173.v1 promoted, while silencing LINC00173.v1 inhibited the proliferation and migration of vascular endothelial cells and the tumorigenesis of SQC cells in vitro and in vivo. Our results further revealed that LINC00173.v1 promoted the proliferation and migration of vascular endothelial cells and the tumorigenesis of SQC cells by upregulating VEGFA expression by sponging miR-511-5p. Importantly, inhibition of LINC00173.v1 via the ASO strategy reduced the tumor growth of SQC cells, and enhanced the therapeutic sensitivity of SQC cells to cisplatin in vivo. Moreover, our results showed that squamous cell carcinoma-specific factor ΔNp63α contributed to LINC00173.v1 overexpression in SQC. CONCLUSION: Our findings clarify the underlying mechanism by which LINC00173.v1 promotes the proliferation and migration of vascular endothelial cells and the tumorigenesis of SQC, demonstrating that LINC00173.v1-targeted drug in combination with cisplatin may serve as a rational regimen against SQC.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Neovascularização Patológica/patologia , RNA Longo não Codificante/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adenocarcinoma de Pulmão/irrigação sanguínea , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/irrigação sanguínea , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica/genética , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cancer Lett ; 482: 56-71, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32289442

RESUMO

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death due to its early recurrence and widespread metastatic potential. Accumulating studies have reported that dysregulation of circadian rhythms-associated regulators is implicated in the recurrence and metastasis of NSCLC. Therefore, identification of metastasis-associated circadian rhythm genes is clinically necessary. Here we report that the circadian gene hepatic leukemia factor (HLF), which was dramatically reduced in early-relapsed NSCLC tissues, was significantly correlated with early progression and distant metastasis in NSCLC patients. Upregulating HLF inhibited, while silencing HLF promoted lung colonization, as well as metastasis of NSCLC cells to bone, liver and brain in vivo. Importantly, downexpression of HLF promoted anaerobic metabolism to support anchorage-independent growth of NSCLC cells under low nutritional condition by activating NF-κB/p65 signaling through disrupting translocation of PPARα and PPARγ. Further investigations revealed that both genetic deletion and methylation contribute to downexpression of HLF in NSCLC tissues. In conclusion, our results shed light on a plausible mechanism by which HLF inhibits distant metastasis in NSCLC, suggesting that HLF may serve as a novel target for clinical intervention in NSCLC.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação para Baixo , Neoplasias Pulmonares/patologia , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Ritmo Circadiano , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , NF-kappa B/metabolismo , Metástase Neoplásica , Transplante de Neoplasias , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais
16.
J Cancer ; 11(8): 2068-2079, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32127934

RESUMO

Previous studies have implicated the important role of mesenchymal stem/stromal cells (MSCs) within tumor microenvironment (TME) in the pathogenesis and progression of nasopharyngeal carcinoma (NPC), but the potential mechanisms are still unclear. Herein, we showed that an elevated IL-6 level was positively correlated with elevated expression of CD73 in TME of NPC. NPC specimens with an IL-6highCD73high phenotype showed higher expression levels of gp80, gp130, p-STAT3, MMP-9 and α-SMA, and clinically, a poorer prognosis than those with an IL-6lowCD73low phenotype. We found that stimulation with conditioned media derived from IL-6 gene knocked out MSC (MSCIL6KO-CM) down-regulated the expression of CD73, IL-6, gp80, p-STAT3, and proliferative cell nuclear antigen (PCNA) in CNE-2 NPC cells. Meanwhile, NPC cells co-cultured with MSCIL6KO-CM were more sensitive to cisplatin than those co-cultured with MSC-CM. Additionally, MSC-derived IL-6 transcriptionally upregulated CD73 expression via activating STAT3 signaling pathway in NPC cells. In summary, our findings suggest that MSCs promote NPC progression and chemoresistance by upregulation of CD73 expression via activating STAT3 signaling pathway.

17.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 27(1): 67-73, 2019 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-30738449

RESUMO

OBJECTIVE: To investigate the clinical significance of tissue factor (TF) and vascular endothelial growth factor (VEGF) expression on peripheral blood CD14 positive monocytes in patients with diffuse large B cell lymphoma (DLBCL). METHODS: The expressions of TF and VEGF on peripheral CD14+ monocytes in 41 patients with DLBCL (DLBCL group) before chemotherapy and after 4 chemotherapeutic courses, and in 20 healthy subjects (control group) were detected by flow cytometry respectively, meanwhile, the relationship of the expression of TF and VEGF with international prognostic indexes (IPI) and short-term effects were analysed. RESULTS: The expression levels of TF and VEGF on peripheral CD14+ monocytes in DLBCL group were significantly higher than those in control group (P<0.01), and a positive correlation was found between the two groups (r=0.755, P<0.01). The expression of TF and VEGF on CD14+ monocytes in patients with prognostic risk factors significantly increased as compared with those in patients without prognostic risk factors (P<0.05), but there were no significant differences of TF and VEGF expressions on CD14+ monocytes in DLBCL group with different sex, age, subtypes (P>0.05). As compared with patients without prognostic risk factors, the expression levels of TF and VEGF on CD14+ monocytes of patients with prognostic risk factors significantly increased (P<0.05). The expression of TF and VEGF on CD14+ monocytes in DLBCL group showed an increasing tendency along with the increase of IPI index (P<0.01). The expression levels of TF and VEGF on CD14+ monocytes in remission group before chemotherapy were lower than those in non-remission group (P<0.01); after chemotherapy, the expression levels of TF and VEGF on CD14+ monocytes in remission group were lower than those before chemotherapy (P<0.05), while the TF and VEGF expression levels in non-remission group were no singnificauly different from TF and VEGF levels before chemtherapy (P>0.05), the survival of patients in group with low expression of TF and VEGF was superior to that in group with high expression of TF and VEGF (P<0.05). CONCLUSION: The paripheral blood CD14+ monocytes in DLBCL patients highly express the TF and VEGF, which relate with IPI, therapeutic efficacy and survival, thus the TF and VEGF expression levels are of reference significance for evaluating the therapeutic efficacy and prognosis of patients.


Assuntos
Linfoma Difuso de Grandes Células B , Protocolos de Quimioterapia Combinada Antineoplásica , Humanos , Receptores de Lipopolissacarídeos , Monócitos , Prognóstico , Tromboplastina , Fator A de Crescimento do Endotélio Vascular
19.
Mol Cancer ; 16(1): 147, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851360

RESUMO

BACKGROUND: Phospholipid phosphatase 4 (PPAPDC1A or PLPP4) has been demonstrated to be involved in the malignant process of many cancers. The purpose of this study was to investigate the clinical significance and biological roles of PLPP4 in lung carcinoma. METHODS: PLPP4 expression was examined in 8 paired lung carcinoma tissues by real-time PCR and in 265 lung carcinoma tissues by immunohistochemistry (IHC). Statistical analysis was performed to evaluate the clinical correlation between PLPP4 expression and clinicopathological features and survival in lung carcinoma patients. In vitro and in vivo assays were performed to assess the biological roles of PLPP4 in lung carcinoma. Fluorescence-activated cell sorting, Western blotting and luciferase assays were used to identify the underlying pathway through which PLPP4 silencing mediates biological roles in lung carcinoma. RESULTS: PLPP4 is differentially elevated in lung adenocarcinoma (ADC) and lung squamous cell carcinoma (SQC) tissues. Statistical analysis demonstrated that high expression of PLPP4 significantly and positively correlated with clinicopathological features, including pathological grade, T category and stage, and poor overall and progression-free survival in lung carcinoma patients. Silencing PLPP4 inhibits proliferation and cell cycle progression in vitro and tumorigenesis in vivo in lung carcinoma cells. Our results further reveal that PLPP4 silencing inhibits Ca2+-permeable cationic channel, suggesting that downregulation of PLPP4 inhibits proliferation and tumorigenesis in lung carcinoma cells via reducing the influx of intracellular Ca2+. CONCLUSION: Our results indicate that PLPP4 may hold promise as a novel marker for the diagnosis of lung carcinoma and as a potential therapeutic target to facilitate the development of novel treatment for lung carcinoma.


Assuntos
Canais de Cálcio/metabolismo , Carcinogênese/metabolismo , Neoplasias Pulmonares/química , Neoplasias Pulmonares/metabolismo , Fosfatidato Fosfatase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Estimativa de Kaplan-Meier , Pulmão/química , Neoplasias Pulmonares/mortalidade , Fosfatidato Fosfatase/genética , Prognóstico
20.
Mediators Inflamm ; 2016: 3214105, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27247488

RESUMO

Epstein-Barr virus-induced gene 3 (EBI3) is a member of the interleukin-12 (IL-12) family structural subunit and can form a heterodimer with IL-27p28 and IL-12p35 subunit to build IL-27 and IL-35, respectively. However, IL-27 stimulates whereas IL-35 inhibits antitumor T cell responses. To date, little is known about the role of EBI3 in tumor microenvironment. In this study, firstly we assessed EBI3, IL-27p28, IL-12p35, gp130, and p-STAT3 expression with clinicopathological parameters of colorectal cancer (CRC) tissues; then we evaluated the antitumor T cell responses and tumor growth with a EBI3 blocking peptide. We found that elevated EBI3 may be associated with IL-12p35, gp130, and p-STAT3 to promote CRC progression. EBI3 blocking peptide promoted antitumor cytotoxic T lymphocyte (CTL) response by inducing Granzyme B, IFN-γ production, and p-STAT3 expression and inhibited CRC cell proliferation and tumor growth to associate with suppressing gp130 and p-STAT3 expression. Taken together, these results suggest that EBI3 may mediate a bidirectional reciprocal-regulation STAT3 signaling pathway to assist the tumor escape immune surveillance in CRC.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Interleucinas/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Peptídeos/uso terapêutico , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/metabolismo , Adulto , Idoso , Animais , Western Blotting , Proliferação de Células/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Interleucinas/antagonistas & inibidores , Masculino , Camundongos , Pessoa de Meia-Idade , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA