Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 565
Filtrar
1.
Anal Chem ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39113553

RESUMO

Herein, the gold nanoclusters/CaFe2O4 nanospheres (Au NCs/CaFe2O4) heterostructure as a novel electrochemiluminescence (ECL) emitter was developed. Excitingly, Au NCs/CaFe2O4 displayed highly efficient and greatly stable ECL based on the newly defined electron-accelerator p-type semiconductor CaFe2O4 NS-induced fast electron transfer; it solved one key obstacle of metal NC-based ECL emitters: sluggish through-covalent bond electron transport kinetics-caused inferior ECL performance. Specifically, on account of the energy level matching between emitter Au NCs and electron-accelerator CaFe2O4 NSs, the valence band (VB) of the electron-accelerator could provide abundant holes for rapidly transporting the electrogenerated electron from the highest occupied molecular orbital (HOMO) of Au NCs to the electrode, generating massive excited species of Au NCs for strong ECL emission. Notably, Au NCs/CaFe2O4 emerged 5.4-fold higher ECL efficiency with 3.5-fold higher electrochemical oxidation current in comparison with pure Au NCs, exhibiting great prospects in extensive lighting installations, ultrasensitive biosensing, and high-resolution ECL imagery. As applications, an ECL bioassay platform was constructed with Au NCs/CaFe2O4 as an emitter and U-like structure-fueled catalytic hairpin assembly (U-CHA) as a signal amplifier for fast and trace analysis of aflatoxin B1 (AFB1) with the detection limit (LOD) down to 2.45 fg/mL, which was 3 orders of magnitude higher than that of the previous ECL biosensors with much better stability. This study developed an entirely new avenue for enlarging the ECL performance of metal NCs, and it is a very attractive orientation for directing the reasonable design of prominent metal NC-based ECL emitters and broadening the practical application of metal NCs.

2.
Anal Chem ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109530

RESUMO

In this work, an ultrasensitive electrochemiluminescence (ECL) biosensor was constructed based on DNA-stabilized Au Ag nanoclusters (DNA-Au Ag NCs) as the efficient luminophore and Au NPs@Ti3C2 as a new coreaction accelerator for determining microRNA-221 (miRNA-221) related to liver cancer. Impressively, DNA-Au Ag NCs were stabilized by the high affinity of the periodic 3C sequence, exhibiting an excellent ECL efficiency of 27% compared with classical BSA-Au Ag NCs (16%). Moreover, the Au NPs@Ti3C2 nanocomposites, as a new coreaction accelerator, were first introduced to accelerate the production of abundant sulfate free radicals (SO4•-) for promoting the ECL efficiency of DNA-Au Ag NCs in the DNA-Au Ag NCs/Au NPs@Ti3C2/S2O82- ternary system due to the energy band of Au NPs@Ti3C2 being well-matched with the frontier orbital of S2O82-. Furthermore, the trace target (miRNA-221) could drive the rolling circle amplification to generate an amount of output DNA with periodic 3C and 10A sequences. Through covalent bonds on the surface of poly A and Au NPs, the distance between the luminophor and the coreaction accelerator could be narrowed to further enhance the detection sensitivity. As a result, the constructed sensor has been applied for the ultrasensitive detection of miRNA-221 with a low detection limit of 50 aM and successfully monitored miRNA-221 in MHCC-97L and HeLa cell lysates. This strategy could be utilized for guiding the synthesis of light-emitting DNA-metal NCs, which has great potential in the construction of ultrasensitive biosensors for the early diagnosis of diseases.

3.
Anal Chem ; 96(28): 11383-11389, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-38946419

RESUMO

Apurinic/apyrimidinic endonuclease 1 (APE1), as a vital base excision repair enzyme, is essential for maintaining genomic integrity and stability, and its abnormal expression is closely associated with malignant tumors. Herein, we constructed an electrochemiluminescence (ECL) biosensor for detecting APE1 activity by combining nanoconfined ECL silver nanoclusters (Ag NCs) with X-shaped DNA recognizer-triggered cascade amplification. Specifically, the Ag NCs were prepared and confined in the glutaraldehyde-cross-linked chitosan hydrogel network using the one-pot method, resulting in a strong ECL response and exceptional stability in comparison with discrete Ag NCs. Furthermore, the self-assembled X-shaped DNA recognizers were designed for APE1 detection, which not only improved reaction kinetics due to the ordered arrangement of recognition sites but also achieved high sensitivity by utilizing the recognizer-triggered cascade amplification of strand displacement amplification (SDA) and DNAzyme catalysis. As expected, this biosensor achieved sensitive ECL detection of APE1 in the range of 1.0 × 10-3 U·µL-1 to 1.0 × 10-10 U·µL-1 with the detection limit of 2.21 × 10-11 U·µL-1, rendering it a desirable approach for biomarker detection.


Assuntos
Técnicas Biossensoriais , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Técnicas Eletroquímicas , Medições Luminescentes , Nanopartículas Metálicas , Prata , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/análise , Prata/química , Humanos , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA/química , Limite de Detecção , DNA Catalítico/química , DNA Catalítico/metabolismo
4.
Anal Chem ; 96(24): 9866-9875, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38835317

RESUMO

Herein, a dual self-protected DNAzyme-based 3D DNA walker (dSPD walker), composed of activated dual self-protected walking particles (ac-dSPWPs) and track particles (TPs), was constructed for ultrasensitive and ultrahigh-speed fluorescence detection and imaging of microRNAs (miRNAs) in living cells. Impressively, compared with the defect that "one" target miRNA only initiates "one" walking arm of the conventional single self-protected DNAzyme walker, the dSPD walker benefits from the secondary amplification and spatial confinement effect and could guide "one" target miRNA to generate "n" secondary targets, thereby initiating "n" nearby walking strands immediately, realizing the initial rate over one-magnitude-order faster than that of the conventional one. Moreover, in the process of relative motion between ac-dSPWPs and TPs, the ac-dSPWPs could cleave multiple substrate strands simultaneously to speed up movement and reduce the derailment rate, as well as combine with successive TPs to facilitate a large amount of continuous signal accumulation, achieving an ultrafast detection of miRNA-221 within 10 min in vitro and high sensitivity with a low detection limit of 0.84 pM. In addition, the DNA nanospheres obtained by the rolling circle amplification reaction can capture the Cy5 fluorescence dispersed in liquids, which achieves the high-contrast imaging of miRNA-221, resulting in further ultrasensitive imaging of miRNA-221 in cancer cells. The proposed strategy has made a bold innovation in the rapid and sensitive detection as well as intracellular imaging of low-abundance biomarkers, offering promising application in early diagnosis and relevant research of cancer and tumors.


Assuntos
DNA Catalítico , MicroRNAs , MicroRNAs/análise , Humanos , DNA Catalítico/química , DNA Catalítico/metabolismo , Imagem Óptica , Limite de Detecção , DNA/química , Espectrometria de Fluorescência , Corantes Fluorescentes/química , Fluorescência , Células HeLa
5.
Biosens Bioelectron ; 260: 116459, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838575

RESUMO

In this study, an ultrasensitive photoelectrochemical (PEC) aptasensor based on dual-sensitized heterojunction Ag2S/ZnS/NiS composites as a signal probe was proposed for the detection of tobramycin (TOB) by combining a cascaded quadratic signal amplification strategy. Specifically, compared to the limited visible light-harvesting capability of single sensitized composites, Ag2S/ZnS/NiS composites with p-n and n-n heterojunction could greatly improve the light energy utilization to tremendously strengthen the optical absorption in the entire visible-light region. Moreover, dual-sensitized heterojunction could effectively hinder the rapid recombination of photoelectrons and holes (carriers) to obtain a good photocurrent for improving the sensitivity of the aptasensor. Furthermore, a cascaded quadratic signal amplification strategy was applied to convert trace target TOB into plentiful gold nanoclusters (Au NCs) labelled double-stranded DNA for the construction of PEC aptasensor, with a broad linear detection range from 0.01 to 100 ng mL-1 and a low detection limit of 3.38 pg mL-1. Importantly, this study provided a versatile and sensitive PEC biosensing platform for TOB analysis, and demonstrated its successful application for TOB detection in milk samples. This protocol provides a novel dual-sensitized heterojunction composites to develop a highly efficient and harmfulless PEC aptasensor, which is expected to be used in food safety, environmental monitoring and other areas.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Luz , Limite de Detecção , Leite , Compostos de Prata , Sulfetos , Tobramicina , Compostos de Zinco , Tobramicina/análise , Tobramicina/química , Técnicas Eletroquímicas/métodos , Aptâmeros de Nucleotídeos/química , Compostos de Prata/química , Compostos de Zinco/química , Sulfetos/química , Leite/química , Animais , Nanopartículas Metálicas/química , Antibacterianos/análise , Ouro/química , Contaminação de Alimentos/análise
6.
Anal Chem ; 96(26): 10809-10816, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38886176

RESUMO

Ru-based electrochemiluminescence (ECL) coordination polymers are widely employed for bioanalysis and medical diagnosis. However, commonly used Ru-based coordination polymers face the limitation of low efficiency due to the long distance between the ECL reagent and the coreactant dispersed in detecting solution. Herein, we report a dual-ligand self-enhanced ECL coordination polymer, composed of tris(4,4'-dicarboxylic acid-2,2'-bipyridyl) ruthenium(II) dichloride (Ru(dcbpy)32+) as ECL reactant ligand and ethylenediamine (EDA) as corresponding coreactant ligand into Zn2+ metal node, termed Zn-Ru-EDA. Zn-Ru-EDA shows excellent ECL performance which is attributed to the effective intramolecular electron transport between the two ligands. Furthermore, the dual-ligand polymer allows an anodic low excitation potential (+1.09 V) luminescence. The shift in the energy level of the highest occupied molecular orbital (HOMO) upward after the synthesis of the Zn-Ru-EDA has resulted in a reduced excitation potential. The low excitation potential reduced biomolecular damage and the destruction of the modified electrodes. The ECL biosensor has been constructed using Zn-Ru-EDA with high ECL efficiency for the ultrasensitive detection of a bacterial infection and sepsis biomarker, procalcitonin (PCT), in the range from 1.00 × 10-6 to 1.00 × 10 ng·mL-1 with outstanding selectivity, and the detection limit was as low as 0.47 fg·mL-1. Collectively, the dual-ligand-based self-enhanced polymer may provide an ideal strategy for high ECL efficiency improvement as well as designing new self-enhanced multiple-ligand-based coordination in sensitive biomolecular detection for early disease diagnostics.


Assuntos
Técnicas Eletroquímicas , Medições Luminescentes , Polímeros , Pró-Calcitonina , Rutênio , Ligantes , Polímeros/química , Pró-Calcitonina/sangue , Pró-Calcitonina/análise , Humanos , Rutênio/química , Complexos de Coordenação/química , Limite de Detecção , Técnicas Biossensoriais , Etilenodiaminas/química
7.
Anal Chem ; 96(26): 10738-10747, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38898770

RESUMO

Herein, CsPbBr3 perovskite quantum dots (CPB PQDs)@poly(methyl methacrylate) (PMMA) (CPB@PMMA) nanospheres were used as energy donors with high Förster resonance energy transfer (FRET) efficiency and exceptional biocompatibility for ultrasensitive dynamic imaging of tiny amounts of microRNAs in living cells. Impressively, compared with traditional homogeneous single QDs as energy donors, CPB@PMMA obtained by encapsulating numerous CPB PQDs into PMMA as energy donors could not only significantly increase the efficiency of FRET via improving the local concentration of CPB PQDs but also distinctly avoid the problem of cytotoxicity caused by divulged heavy metal ions entering living cells. Most importantly, in the presence of target miRNA-21, DNA dendrimer-like nanostructures labeled with 6-carboxy-tetramethylrhodamine (TAMRA) were generated by the exposed tether interhybridization of the Y-shape structure, which could wrap around the surface of CPB@PMMA nanospheres to remarkably bridge the distance of FRET and increase the opportunity for effective energy transfer, resulting in excellent precision and accuracy for ultrasensitive and dynamic imaging of miRNAs. As proof of concept, the proposed strategy exhibited ultrahigh sensitivity with a detection limit of 45.3 aM and distinctly distinguished drug-irritative miRNA concentration abnormalities with living cells. Hence, the proposed enzyme-free CPB@PMMA biosensor provides convincing evidence for supplying accurate information, which could be expected to be a powerful tool for bioanalysis, diagnosis, and prognosis of human diseases.


Assuntos
Transferência Ressonante de Energia de Fluorescência , MicroRNAs , Óxidos , Pontos Quânticos , Titânio , Pontos Quânticos/química , MicroRNAs/análise , Humanos , Titânio/química , Óxidos/química , Compostos de Cálcio/química , Polimetil Metacrilato/química , Chumbo/química , Chumbo/análise , Gadolínio/química
8.
Anal Chem ; 96(24): 9961-9968, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38838250

RESUMO

In this study, a novel europium dual-ligand metal-organic gel (Eu-D-MOGs) with high-efficient anodic annihilation electrochemiluminescence (ECL) was synthesized as an ECL emitter to construct a biosensor for ultrasensitive detection of microRNA-221 (miR-221). Impressively, compared to the ECL signal of europium single-ligand metal-organic gels (Eu-S-MOGs), the ECL signal of Eu-D-MOGs was significantly improved since the two organic ligands could jointly replace the H2O and coordinate with Eu3+, which could remarkably reduce the nonradiative vibrational energy transfer caused by the coordination between H2O and Eu3+ with a high coordination demand. In addition, Eu-D-MOGs could be electrochemically oxidized to Eu-D-MOGs•+ at 1.45 V and reduced to Eu-D-MOGs•- at 0.65 V to achieve effective annihilation of ECL, which overcame the side reaction brought by the remaining emitters at negative potential. This benefited from the annihilation ECL performance of the central ion Eu3+ caused by its redox in the electrochemical process. Furthermore, the annihilation ECL signal of Eu3+ could be improved by sensitizing Eu3+ via the antenna effect. In addition, combined with the improved rolling circle amplification-assisted strand displacement amplification strategy (RCA-SDA), a sensitive biosensor was constructed for the sensitive detection of miR-221 with a low detection limit of 5.12 aM and could be successfully applied for the detection of miR-221 in the lysate of cancer cells. This strategy offered a unique approach to synthesizing metal-organic gels as ECL emitters without a coreactant for the construction of ECL biosensing platforms in biomarker detection and disease diagnosis.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Európio , Géis , Medições Luminescentes , MicroRNAs , Európio/química , MicroRNAs/análise , Técnicas Eletroquímicas/métodos , Ligantes , Géis/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Humanos
9.
Anal Chem ; 96(19): 7516-7523, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38691765

RESUMO

Herein, single-atom iron doped carbon dots (SA Fe-CDs) were successfully prepared as novel electrochemiluminescence (ECL) emitters with high ECL efficiency, and a biosensor was constructed to ultrasensitively detect microRNA-222 (miRNA-222). Importantly, compared with the conventional without single-atom doped CDs with low ECL efficiency, SA Fe-CDs exhibited strong ECL efficiency, in which single-atom iron as an advanced coreactant accelerator could significantly enhance the generation of reactive oxygen species (ROS) from the coreactant S2O82- for improving the ECL efficiency. Moreover, a neoteric amplification strategy combining the improved strand displacement amplification with Nt.BbvCI enzyme-induced target amplification (ISDA-EITA) could produce 4 output DNAs in every cycle, which greatly improved the amplification efficiency. Thus, a useful ECL biosensor was built with a detection limit of 16.60 aM in the range of 100 aM to 1 nM for detecting traces of miRNA-222. In addition, miRNA-222 in cancer cell lysate (MHCC-97L) was successfully detected by using the ECL biosensor. Therefore, this strategy provides highly efficient single-atom doped ECL emitters for the construction of sensitive ECL biosensing platforms in the biological field and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Carbono , Técnicas Eletroquímicas , Ferro , Medições Luminescentes , MicroRNAs , Pontos Quânticos , MicroRNAs/análise , Carbono/química , Ferro/química , Técnicas Eletroquímicas/métodos , Pontos Quânticos/química , Humanos , Técnicas Biossensoriais/métodos , Limite de Detecção
10.
Anal Chem ; 96(22): 9097-9103, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38768044

RESUMO

Herein, a fluorescence light-up 3D DNA walker (FLDW) was powered and accelerated by endogenous adenosine-5'-triphosphate (ATP) molecules to construct a biosensor for sensitive and rapid label-free detection and imaging of microRNA-221 (miRNA-221) in malignant tumor cells. Impressively, ATP as the driving force and accelerator for FLDW could significantly accelerate the operation rate of FLDW, reduce the likelihood of errors in signaling, and improve the sensitivity of detection and imaging. When FLDW was initiated by output DNA H1-op transformed by target miRNA-221, G-rich sequences in the S strand, anchored to AuNP, were exposed to form G-quadruplexes (G4s), and thioflavin T (ThT) embedded in the G4s emitted intense fluorescence to realize sensitive and rapid detection of target miRNA-221. Meanwhile, the specific binding of ThT to G4 with a weak background fluorescence response was utilized to enhance the signal-to-noise ratio of the label-free assay straightforwardly and cost-effectively. The proposed FLDW system could realize sensitive detection of the target miRNA-221 in the range of 1 pM to 10 nM with a detection limit of 0.19 pM by employing catalytic hairpin assembly (CHA) to improve the conversion of the target. Furthermore, by harnessing the abundant ATP present in the tumor microenvironment, FLDW achieved rapid and accurate imaging of miRNA-221 in cancer cells. This strategy provides an innovative and high-speed label-free approach for the detection and imaging of biomarkers in cancer cells and is expected to be a powerful tool for bioanalysis, diagnosis, and prognosis of human diseases.


Assuntos
Trifosfato de Adenosina , Técnicas Biossensoriais , DNA , MicroRNAs , MicroRNAs/análise , MicroRNAs/metabolismo , Humanos , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , DNA/química , Técnicas Biossensoriais/métodos , Imagem Óptica , Quadruplex G , Fluorescência , Corantes Fluorescentes/química , Limite de Detecção , Ouro/química
11.
Anal Chem ; 96(11): 4589-4596, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38442212

RESUMO

Herein, novel europium metal-organic gels (Eu-MOGs) with excellent cathode electrochemiluminescence (ECL) emission are first used to construct biosensors for the ultrasensitive detection of miRNA-222. Impressively, N and O elements of organic ligand 2,2':6,2″-terpyridine 4,4',4″-tricarboxylic acid (H3-tctpy) can perfectly coordinate with Eu3+ to form Eu-MOGs, which not only reduce nonradiative transition caused by the intramolecular free rotation of phenyl rings in other MOGs to enhance the ECL signal with extraordinary ECL efficiency as high as 37.2% (vs the [Ru(bpy)3]2+/S2O82- ECL system) but also reinforce ligand-to-metal charge transfer (LMCT) by the strong affinity between Eu3+ and N and O elements to greatly improve the stability of ECL signals. Besides, an improved nucleic acid cascade amplification reaction is developed to greatly raise the conversion efficiency from target miRNA-222 to a DNAzyme-mediated dual-drive DNA walker as output DNA, which can simultaneously shear the specific recognition sites from two directions. In that way, the proposed biosensor can further enhance the detection sensitivity of miRNA-222 with a linear range of 10 aM-1 nM and a detection limit (LOD) of 8.5 aM, which can also achieve an accurate response in cancer cell lysates of MHCC-97L and HeLa. Additionally, the biosensor can be self-regenerated by the folding/unfolding of related triplets with pH changes to simplify experimental operations and reduce the cost. Hence, this work proposed novel MOGs with stable and intense ECL signals for the construction of a renewable ECL biosensor, supplying a reliable detection method in biomarker analysis and disease diagnosis.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , MicroRNAs , Humanos , Európio , Ligantes , DNA/química , Medições Luminescentes/métodos , MicroRNAs/análise , Técnicas Biossensoriais/métodos , Géis , Técnicas Eletroquímicas/métodos , Limite de Detecção
12.
Medicine (Baltimore) ; 103(10): e37516, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457534

RESUMO

This study aimed to investigate the changing trends, level differences, and prognostic performance of the leukocyte and lymphocyte levels of patients infected with the Wild strains, Delta strains and Omicron strains to provide a reference for prognostic assessment. In the current study, we conducted a retrospective cross-sectional study to evaluate the changing trends, level differences, and prognostic performance of leukocyte and lymphocyte of different strains at admission and discharge may already exist in patients with coronavirus disease-2019 (COVID-19) infected with the Wild type, Delta, and Omicron strains. A retrospective cross-sectional study was conducted. We recruited and screened the 243 cases infected with the Wild-type strains in Wuhan, the 629 cases infected with the Delta and 116 cases infected strains with the Omicron strains in Xi'an. The leukocyte and lymphocyte levels were compared the cohort of Wild-type infection with the cohort of Delta and the Omicron. The changes in the levels of leukocytes and lymphocytes exhibit a completely opposite trend in patients with COVID-19 infected with the different strains. The lymphocyte level at admission and discharge in patients with COVID-19 infected with Omicron strains (area under curve [AUC] receiver operating characteristic curve [ROC] 72.8-90.2%, 82.8-97.2%) presented better performance compared patients with COVID-19 infected with Wild type strains (AUC ROC 60.9-80.7%, 82.3-97.2%) and Delta strains (AUC ROC 56.1-84.7%, 40.3-93.3%). Kaplan-Meier curves showed that the leukocyte levels above newly established cutoff values and the lymphocyte levels below newly established cutoff values had a significantly higher risk of in-hospital mortality in COVID-19 patients with Wild-type and Omicron strains (P < .01). The levels of leukocyte and lymphocyte at admission and discharge in patients with COVID-19 infected with the Wild type, Delta, and Omicron strains may be differences among strains, which indicates different death risks. Our research may help clinicians identify patients with a poor prognosis for severe acute respiratory syndrome coronavirus 2 infection.


Assuntos
COVID-19 , Humanos , Estudos Transversais , Estudos Retrospectivos , Leucócitos , Linfócitos
13.
Aging (Albany NY) ; 16(6): 5027-5037, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38517365

RESUMO

Pulmonary arterial hypertension (PAH) is a severe pathophysiological syndrome resulting in heart failure, which is found to be induced by pulmonary vascular remodeling mediated by oxidative stress (OS) and inflammation. Phoenixin-20 (PNX-20) is a reproductive peptide first discovered in mice with potential suppressive properties against OS and inflammatory response. Our study will explore the possible therapeutic functions of PHN-20 against PAH for future clinical application. Rats were treated with normal saline, PHN-20 (100 ng/g body weight daily), hypoxia, hypoxia+PHN-20 (100 ng/g body weight daily), respectively. A signally elevated RVSP, mPAP, RV/LV + S, and W%, increased secretion of cytokines, enhanced malondialdehyde (MDA) level, repressed superoxide dismutase (SOD) activity, and activated NLRP3 signaling were observed in hypoxia-stimulated rats, which were notably reversed by PHN-20 administration. Pulmonary microvascular endothelial cells (PMECs) were treated with hypoxia with or without PHN-20 (10 and 20 nM). Marked elevation of inflammatory cytokine secretion, increased MDA level, repressed SOD activity, and activated NLRP3 signaling were observed in hypoxia-stimulated PMECs, accompanied by a downregulation of SIRT1. Furthermore, the repressive effect of PHN-20 on the domains-containing protein 3 (NLRP3) pathway in hypoxia-stimulated PMECs was abrogated by sirtuin1 (SIRT1) knockdown. Collectively, PHN-20 alleviated PAH via inhibiting OS and inflammation by mediating the transcriptional function of SIRT1.


Assuntos
Hipertensão Pulmonar , Hormônios Peptídicos , Hipertensão Arterial Pulmonar , Ratos , Camundongos , Animais , Hipertensão Arterial Pulmonar/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Sirtuína 1/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar , Estresse Oxidativo , Inflamação , Hipóxia , Superóxido Dismutase/metabolismo , Peso Corporal
14.
Food Chem ; 446: 138872, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442680

RESUMO

Developing sensitive and accurate Ochratoxin A (OTA) detection methods is essential for food safety. Herein, a simple and reliable strategy for regulating interenzyme distance based on a rigid DNA quadrangular prism as a scaffold was proposed to establish a new electrochemical biosensor for ultrasensitive detection of OTA. The interenzyme distances were precisely adjusted by changing the sequences of the hybridized portions of hairpins SH1 and SH2 to the DNA quadrangular prism, avoiding the complexity and instability of the previous DNA scaffold-based enzyme spacing adjustment strategies. The electrochemical biosensor constructed at the optimal interenzyme distance (10.4 nm) achieved sensitive detection of OTA in a dynamic concentration range from 10 fg/mL to 250 ng/mL with a detection limit of 3.1 fg/mL. In addition, the biosensor was applied to quantify OTA in real samples, exhibiting great application potential in food safety.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Ocratoxinas , DNA , Ocratoxinas/análise , Técnicas Biossensoriais/métodos , Limite de Detecção , Técnicas Eletroquímicas/métodos
15.
Chem Sci ; 15(9): 3255-3261, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38425534

RESUMO

Here we report for the first time the phenomenon of continuously color-tunable electrochemiluminescence (ECL) from individual gold nanoclusters (Au NCs) confined in a porous hydrogel matrix by adjusting the concentration of the co-reactant. Specifically, the hydrogel-confined Au NCs exhibit strong dual-color ECL in an aqueous solution with triethylamine (TEA) as a co-reactant, with a record-breaking quantum yield of 95%. Unlike previously reported Au NCs, the ECL origin of the hydrogel-confined Au NCs is related to both the Au(0) kernel and the Au(i)-S surface. Surprisingly, the surface-related ECL of Au NCs exhibits a wide color-tunable range of 625-829 nm, but the core-related ECL remains constant at 489 nm. Theoretical and experimental studies demonstrate that the color-tunable ECL is caused by the dynamic surface reconstruction of Au NCs and TEA radicals. This work opens up new avenues for dynamically manipulating the ECL spectra of core-shell emitters in biosensing and imaging research.

16.
Biosens Bioelectron ; 254: 116193, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479342

RESUMO

Herein, a new electrochemiluminescence (ECL) biosensor was constructed with highly efficient polymerized carbon dots (PCDs) as ECL emitter and the improved localized catalytic hairpin assembly (L-CHA) as signal amplifier for ultrasensitive detection of microRNA-222 (miRNA-222). Impressively, compared to the traditional carbon dots with inefficient blue region ECL emission, PCDs with N, O co-dope and large conjugated π-system showed high electrical conductivity, narrow band gap and strong radiative transition, which could exhibit high ECL efficiency to improve the sensitivity of detection and long wavelength ECL emission to achieve deep tissue penetration for reducing biological damage. Furthermore, the trace target miRNA-222 could be efficiently converted into large amounts of output DNA labelled with the quencher dopamine (S-DA) through the L-CHA reaction to significantly enhance the target amplification efficiency for further improving the sensitivity of detection. Thus, the ECL biosensor could achieve the ultrasensitive detection of miRNA-222 from 100 aM to 100 pM with the detection limit of 76 aM. Therefore, this work proposed a novel CDs with high ECL efficiency and long wavelength ECL emission, which not only was used to build an ultrasensitive biosensor for biomolecules detection in clinical diagnosis, but also served as a potential emitter for ECL bioimaging.


Assuntos
Técnicas Biossensoriais , MicroRNAs , MicroRNAs/genética , Carbono , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
17.
Anal Chem ; 96(9): 3837-3843, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38384162

RESUMO

Herein, an antibody-protein-aptamer electrochemical biosensor was designed by highly efficient proximity-induced DNA hybridization on a tetrahedral DNA nanostructure (TDN) for ultrasensitive detection of human insulin-like growth factor-1 (IGF-1). Impressively, the IGF-1 antibody immobilized on the top vertex of the TDN could effectively capture the target protein with less steric effect, and the ferrocene-labeled signal probe (SP) bound on the bottom vertex of the TDN was close to the electrode surface for generating a strong initial signal. In the presence of target protein IGF-1 and an aptamer strand, an antibody-protein-aptamer sandwich could be formed on the top vertex of TDN, which would trigger proximity-induced DNA hybridization to release the SP on the bottom vertex of TDN; therefore, the signal response would decrease dramatically, enhancing the sensitivity of the biosensor. As a result, the linear range of the proposed biosensor for target IGF-1 was 1 fM to 1 nM with the limit of detection down to 0.47 fM, which was much lower than that of the traditional TDN designs on electrochemical biosensors. Surprisingly, the use of this approach offered an innovative approach for the sensitive detection of biomarkers and illness diagnosis.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Humanos , Peptídeos Semelhantes à Insulina , Fator de Crescimento Insulin-Like I , DNA/química , Anticorpos , Oligonucleotídeos , Nanoestruturas/química , Técnicas Eletroquímicas , Limite de Detecção
18.
Anal Chem ; 95(45): 16625-16630, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37908115

RESUMO

Herein, a novel photocathodic nanocomposite poly{4,8-bis[5-(2-ethylhexyl)-thiophen-2-yl] benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4-b]thiophene-4,6-diyl}/phthalocyanine zinc (PTB7-Th/ZnPc) with high photoelectric conversion efficiency under long-wavelength illumination was prepared to construct an ultrasensitive biosensor for the detection of microRNA-21 (miRNA-21), accompanied by a prominent anti-interference capability toward reductive substances. Impressively, the new heterojunction PTB7-Th/ZnPc nanocomposite could not only generate a strong cathodic photocurrent to improve the detection sensitivity under long-wavelength illumination (660 nm) but also effectively avoid the high damage of biological activity caused by short-wavelength light stimulation. Accordingly, by coupling with rolling circle amplification (RCA)-triggered DNA amplification to form functional biquencher nanospheres, a PEC biosensor was fabricated to realize the ultrasensitive analysis of miRNA-21 in the concentration range of 0.1 fM to 10 nM with a detection limit as low as 32 aM. This strategy provided a novel long-wavelength illumination-induced photocurrent enhancement photoactive material for a sensitive and low-damage anti-interference bioassay and early clinical disease diagnosis.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Nanocompostos , Iluminação , Técnicas Eletroquímicas , MicroRNAs/análise
19.
Anal Chem ; 95(39): 14558-14565, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37734161

RESUMO

In this work, the orderly aggregated catalytic hairpin assembly (OA-CHA) was developed for synchronous ultrasensitive detection and high-efficiency colocalization imaging of dual-miRNAs by a carefully designed tetrahedral conjugated ladder DNA structure (TCLDS). Exactly, two diverse hairpin probes were fixed on tetrahedron conjugated DNA nanowires to form the TCLDS without fluorescence response, which triggered OA-CHA in the aid of output DNA 1 and output DNA 2 produced by targets miRNA-217 and miRNA-196a cycle to generate TCLDS with remarkable fluorescence response. Impressively, compared with the traditional CHA strategy, OA-CHA avoided the fluorescence group and quenching group from approaching again because of the spatial confinement effect to significantly enhance the fluorescence signal, resulting in the simultaneous ultrasensitive detection of dual-miRNAs with detection limits of 21 and 32 fM for miRNA-217 and miRNA-196a, respectively. Meanwhile, the TCLDS with lower diffusivity could achieve accurate localization imaging for reflecting the spatial distribution of dual-miRNAs in living cells. The strategy based on OA-CHA provided a flexible and programmable nucleic amplification method for the synchronous ultrasensitive detection and precise imaging of multiple biomarkers and had potential in disease diagnostics..


Assuntos
Técnicas Biossensoriais , DNA Catalítico , MicroRNAs , MicroRNAs/genética , Técnicas Biossensoriais/métodos , DNA/química , Diagnóstico por Imagem , Catálise , Limite de Detecção
20.
Biosens Bioelectron ; 240: 115607, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37660459

RESUMO

In this work, selenium and nitrogen co-doped carbon dots (SeN-CDs) possessing highly efficient electrochemiluminescence (ECL) and excellent biocompatibility were synthesized as a new emitter with S2O82- as a coreactant for constructing a biosensor to detect microRNA-221 (miRNA-221) sensitively. Notably, the SeN-CDs exhibited superior ECL performance compared with the N-doped CDs, in which selenium with excellent redox activity served as a coreaction accelerator for facilitating the electroreduction of S2O82- to significantly improve ECL efficiency. Furthermore, target-induced T7 exonuclease (T7 Exo)-assisted double cycle amplification strategy could convert traces of target miRNA-221 into large amounts of output DNA to capture three-dimensional (3D) nanostructures (DTN-Au NPs-DOX-Fc) loaded with large amounts of ECL signal quencher. The constructed biosensor could realize ultrasensitive detection of miRNA-221 and has a low detection limit reaching 2.3 aM, with a successful application to detect miRNA-221 in lysate of Hela and MHCC97-L cancer cell. This work explored a novel method to strengthen the ECL performance of CDs to construct an ECL biosensing platform with sensitive detecting of biomarkers and disease diagnosis.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Racepinefrina , Selênio , Carbono , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA