Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(5): e11467, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799397

RESUMO

Understanding and accurately predicting how the sensitivity of terrestrial vegetation productivity to rising atmospheric CO2 concentration (ß) is crucial for assessing carbon sink dynamics. However, the temporal characteristics and driving mechanisms of ß remain uncertain. Here, observational and CMIP6 modeling evidence suggest a decreasing trend in ß at the Northern Middle and High Latitudes during the historical period of 1982-2015 (-0.082 ± 0.005% 100 ppm-1 year-1). This decreasing trend is projected to persist until the end of the 21st century (-0.082 ± 0.005% 100 ppm-1 year-1 under SSP370 and -0.166 ± 0.006% 100 ppm-1 year-1 under SSP585). The declining ß indicates a weakening capacity of vegetation to mitigate warming climates, posing challenges for achieving the temperature goals of the Paris Agreement. The rise in vapor pressure deficit (VPD), that triggers stomata closure and weakens photosynthesis, is considered as the dominated factor contributing to the historical and future decline in ß, accounting for 62.3%-75.2% of the effect. Nutrient availability and water availability contribute 15.7%-21.4% and 8.5%-16.3%, respectively. These findings underscore the significant role of VPD in shaping terrestrial carbon sink dynamics, an aspect that is currently insufficiently considered in many climate and ecological models.

2.
PLoS One ; 19(5): e0301759, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38776270

RESUMO

Large differences in projected future annual precipitation increases in North America exists across 27 CMIP6 models under four emission scenarios. These differences partly arise from weak representations of land-atmosphere interactions. Here we demonstrate an emergent constraint relationship between annual growth rates of future precipitation and growth rates of historical temperature. The original CMIP6 projections show 0.49% (SSP126), 0.98% (SSP245), 1.45% (SSP370) and 1.92% (SSP585) increases in precipitation per decade. Combining observed warming trends, the constrained results show that the best estimates of future precipitation increases are more likely to reach 0.40-0.48%, 0.83-0.93%, 1.29-1.45% and 1.70-1.87% respectively, implying an overestimated future precipitation increases across North America. The constrained results also are narrow the corresponding uncertainties (standard deviations) by 13.8-31.1%. The overestimated precipitation growth rates also reveal an overvalued annual growth rates in temperature (6.0-13.2% or 0.12-0.37°C) and in total evaporation (4.8-14.5%) by the original models' predictions. These findings highlight the important role of temperature for accurate climate predictions, which is important as temperature from current climate models' simulations often still have systematic errors.


Assuntos
Chuva , América do Norte , Incerteza , Temperatura , Modelos Teóricos , Mudança Climática , Previsões/métodos
3.
Nat Commun ; 13(1): 4124, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840591

RESUMO

Climate projections are essential for decision-making but contain non-negligible uncertainty. To reduce projection uncertainty over Asia, where half the world's population resides, we develop emergent constraint relationships between simulated temperature (1970-2014) and precipitation (2015-2100) growth rates using 27 CMIP6 models under four Shared Socioeconomic Pathways. Here we show that, with uncertainty successfully narrowed by 12.1-31.0%, constrained future precipitation growth rates are 0.39 ± 0.18 mm year-1 (29.36 mm °C-1, SSP126), 0.70 ± 0.22 mm year-1 (20.03 mm °C-1, SSP245), 1.10 ± 0.33 mm year-1 (17.96 mm °C-1, SSP370) and 1.42 ± 0.35 mm year-1 (17.28 mm °C-1, SSP585), indicating overestimates of 6.0-14.0% by the raw CMIP6 models. Accordingly, future temperature and total evaporation growth rates are also overestimated by 3.4-11.6% and -2.1-13.0%, respectively. The slower warming implies a lower snow cover loss rate by 10.5-40.2%. Overall, we find the projected increase in future water availability is overestimated by CMIP6 over Asia.


Assuntos
Mudança Climática , Água , Ásia , Clima , Modelos Teóricos
4.
Sci Total Environ ; 709: 136062, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31887524

RESUMO

We investigate global trends in seasonal water discharge using data from 5668 hydrological stations in catchments whose total drainage area accounts for 2/3 of the Earth's total land area. Homogenization of water discharge, which occurs when the gap in water discharge between dry and flood seasons shrinks significantly, affects catchments occupying 2/5 of the total land area, and is mainly concentrated in Eurasia and North America. By contrast, polarization of water discharge, associated with widening of the gap in water discharge between dry and flood seasons, occurs in catchments covering 1/6 of the land area, most notably in the Amazon Basin and river basins in West Africa. Considering the major climatic and anthropogenic controlling factors, i.e. precipitation (P), evaporation (E), glacial runoff (G), and dam operations (D), the world's river basins are classified as P, DEP, GEP, and EP types. Contributions from each controlling factor to either the homogenization or polarization of the seasonal water discharge for each type of river have been analyzed. We found that homogenization of discharge is dominated by dam operations in GDEP and DEP river basins (contributing 48% and 64%) and by homogenized precipitation in GEP and EP river basins. Evaporation and precipitation are primary factors behind the polarization of discharge, contributing 56% and 41%. This study provides a basis for a possible decision tool for controlling drought/flood disasters and for assessing and preventing ecological damage in endangered regions.

5.
Sci Rep ; 9(1): 5060, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30911055

RESUMO

Understanding the effects of climate variability and reservoir operation on runoff is important for shipping, irrigation and water supply services, especially during extreme drought years. After the operation of the Three Gorges Dam (TGD) began, the discharge processes in the mid-lower reaches of the Yangtze River were completely different from those during the pre-dam period. The measured hydrological data and the Mike 11-HD model were used to estimate the contributions of the TGD operation and climate variability to the variation in discharge during extreme drought years. The results are as follows: under the effects of the TGD operation and extreme drought, the special phenomenon of a "positive discharge anomaly in drought season and negative discharge anomaly in flood season" occurred compared with the conditions in the pre-dam period. During the flood season, the contributions of climate variation (TGD operation) to the changes in streamflow from Yichang station to Datong station were 86.6% (13.4%) and 80.7% (19.7%) in 2006 and 64.8% (35.2%) and 71.3% (28.7%) in 2011. During the dry season, the values were 81.2% (18.8%) and 93.9% (6.1%) in 2006 and 59.9% (40.1%) and 72.9% (27.1%) in 2011. Clearly, climate variation was the main reason for the variation in seasonal runoff. Furthermore, even in the 156 m and 175 m impoundments, climate variation was the dominant factor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA