Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Immunol Rev ; 322(1): 311-328, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306168

RESUMO

Inborn errors of immunity (IEIs) encompass a diverse spectrum of genetic disorders that disrupt the intricate mechanisms of the immune system, leading to a variety of clinical manifestations. Traditionally associated with an increased susceptibility to recurrent infections, IEIs have unveiled a broader clinical landscape, encompassing immune dysregulation disorders characterized by autoimmunity, severe allergy, lymphoproliferation, and even malignancy. This review delves into the intricate interplay between IEIs and the JAK-STAT signaling pathway, a critical regulator of immune homeostasis. Mutations within this pathway can lead to a wide array of clinical presentations, even within the same gene. This heterogeneity poses a significant challenge, necessitating individually tailored therapeutic approaches to effectively manage the diverse manifestations of these disorders. Additionally, JAK-STAT pathway defects can lead to simultaneous susceptibility to both infection and immune dysregulation. JAK inhibitors, with their ability to suppress JAK-STAT signaling, have emerged as powerful tools in controlling immune dysregulation. However, questions remain regarding the optimal selection and dosing regimens for each specific condition. Hematopoietic stem cell transplantation (HSCT) holds promise as a curative therapy for many JAK-STAT pathway disorders, but this procedure carries significant risks. The use of JAK inhibitors as a bridge to HSCT has been proposed as a potential strategy to mitigate these risks.


Assuntos
Doenças do Sistema Imunitário , Inibidores de Janus Quinases , Humanos , Transdução de Sinais , Inibidores de Janus Quinases/uso terapêutico , Inibidores de Janus Quinases/farmacologia , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo
2.
J Allergy Clin Immunol ; 149(2): 758-766, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34329649

RESUMO

BACKGROUND: Pediatric nonmalignant lymphoproliferative disorders (PLPDs) are clinically and genetically heterogeneous. Long-standing immune dysregulation and lymphoproliferation in children may be life-threatening, and a paucity of data exists to guide evaluation and treatment of children with PLPD. OBJECTIVE: The primary objective of this study was to ascertain the spectrum of genomic immunologic defects in PLPD. Secondary objectives included characterization of clinical outcomes and associations between genetic diagnoses and those outcomes. METHODS: PLPD was defined by persistent lymphadenopathy, lymph organ involvement, or lymphocytic infiltration for more than 3 months, with or without chronic or significant Epstein-Barr virus (EBV) infection. Fifty-one subjects from 47 different families with PLPD were analyzed using whole exome sequencing. RESULTS: Whole exome sequencing identified likely genetic errors of immunity in 51% to 62% of families (53% to 65% of affected children). Presence of a genetic etiology was associated with younger age and hemophagocytic lymphohistiocytosis. Ten-year survival for the cohort was 72.4%, and patients with viable genetic diagnoses had a higher survival rate (82%) compared to children without a genetic explanation (48%, P = .03). Survival outcomes for individuals with EBV-associated disease and no genetic explanation were particularly worse than outcomes for subjects with EBV-associated disease and a genetic explanation (17% vs 90%; P = .002). Ascertainment of a molecular diagnosis provided targetable treatment options for up to 18 individuals and led to active management changes for 12 patients. CONCLUSIONS: PLPD defines children at high risk for mortality, and whole exome sequencing informs clinical risks and therapeutic opportunities for this diagnosis.


Assuntos
Transtornos Linfoproliferativos/genética , Adolescente , Autoimunidade , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Testes Genéticos , Herpesvirus Humano 4/isolamento & purificação , Humanos , Imunidade/genética , Lactente , Transtornos Linfoproliferativos/etiologia , Transtornos Linfoproliferativos/imunologia , Transtornos Linfoproliferativos/mortalidade , Masculino , Sequenciamento do Exoma , Adulto Jovem
5.
J Clin Immunol ; 41(1): 38-50, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33006109

RESUMO

PURPOSE: The Primary Immune Deficiency Treatment Consortium (PIDTC) enrolled children with severe combined immunodeficiency (SCID) in a prospective natural history study of hematopoietic stem cell transplant (HSCT) outcomes over the last decade. Despite newborn screening (NBS) for SCID, infections occurred prior to HSCT. This study's objectives were to define the types and timing of infection prior to HSCT in patients diagnosed via NBS or by family history (FH) and to understand the breadth of strategies employed at PIDTC centers for infection prevention. METHODS: We analyzed retrospective data on infections and pre-transplant management in patients with SCID diagnosed by NBS and/or FH and treated with HSCT between 2010 and 2014. PIDTC centers were surveyed in 2018 to understand their practices and protocols for pre-HSCT management. RESULTS: Infections were more common in patients diagnosed via NBS (55%) versus those diagnosed via FH (19%) (p = 0.012). Outpatient versus inpatient management did not impact infections (47% vs 35%, respectively; p = 0.423). There was no consensus among PIDTC survey respondents as to the best setting (inpatient vs outpatient) for pre-HSCT management. While isolation practices varied, immunoglobulin replacement and antimicrobial prophylaxis were more uniformly implemented. CONCLUSION: Infants with SCID diagnosed due to FH had lower rates of infection and proceeded to HSCT more quickly than did those diagnosed via NBS. Pre-HSCT management practices were highly variable between centers, although uses of prophylaxis and immunoglobulin support were more consistent. This study demonstrates a critical need for development of evidence-based guidelines for the pre-HSCT management of infants with SCID following an abnormal NBS. TRIAL REGISTRATION: NCT01186913.


Assuntos
Controle de Infecções , Infecções/epidemiologia , Infecções/etiologia , Imunodeficiência Combinada Severa/complicações , Imunodeficiência Combinada Severa/epidemiologia , Idade de Início , Antibioticoprofilaxia , Tomada de Decisão Clínica , Gerenciamento Clínico , Suscetibilidade a Doenças , Feminino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Lactente , Recém-Nascido , Infecções/diagnóstico , Masculino , Triagem Neonatal , Prognóstico , Vigilância em Saúde Pública , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/terapia , Inquéritos e Questionários , Tempo para o Tratamento
7.
Curr Opin Pediatr ; 31(6): 843-850, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31693596

RESUMO

PURPOSE OF REVIEW: The Janus kinase (JAK) and signal transducer of activation (STAT) pathway plays a key role in the immune system. It is employed by diverse cytokines, interferons, growth factors and related molecules. Mutations in JAK/STAT pathway have been implicated in human disease. Here we review JAK/STAT biology and diseases associated with mutations in this pathway. RECENT FINDINGS: Over the past 10 years, many mutations in JAK/STAT pathway has been discovered. These disorders have provided insights to human immunology. SUMMARY: In this review, we summarize the biology of each STAT and JAK as well as discuss the human disease that results from somatic or germline mutations to include typical presentation, immunological parameters and treatment.


Assuntos
Janus Quinases/genética , Fatores de Transcrição STAT/genética , Transdução de Sinais , Citocinas , Humanos , Mutação
8.
Immunity ; 51(1): 185-197.e6, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31278058

RESUMO

Innate lymphoid cells (ILCs) promote tissue homeostasis and immune defense but also contribute to inflammatory diseases. ILCs exhibit phenotypic and functional plasticity in response to environmental stimuli, yet the transcriptional regulatory networks (TRNs) that control ILC function are largely unknown. Here, we integrate gene expression and chromatin accessibility data to infer regulatory interactions between transcription factors (TFs) and genes within intestinal type 1, 2, and 3 ILC subsets. We predicted the "core" TFs driving ILC identities, organized TFs into cooperative modules controlling distinct gene programs, and validated roles for c-MAF and BCL6 as regulators affecting type 1 and type 3 ILC lineages. The ILC network revealed alternative-lineage-gene repression, a mechanism that may contribute to reported plasticity between ILC subsets. By connecting TFs to genes, the TRNs suggest means to selectively regulate ILC effector functions, while our network approach is broadly applicable to identifying regulators in other in vivo cell populations.


Assuntos
Intestinos/fisiologia , Subpopulações de Linfócitos/fisiologia , Linfócitos/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Plasticidade Celular , Montagem e Desmontagem da Cromatina , Repressão Epigenética , Redes Reguladoras de Genes , Imunidade Inata , Imunomodulação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-maf/genética , Transcriptoma
9.
Front Pediatr ; 7: 130, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069200

RESUMO

Autosomal dominant hyper-IgE syndrome caused by mutations in the transcription factor STAT3 (AD-HIES) is characterized by a collection of immunologic and non-immune features including eczema, recurrent infections, elevated IgE levels, and connective tissue anomalies. We report the case of a Qatari child with a history of recurrent staphylococcal skin infections since infancy, who was found to have a novel, de novo mutation in STAT3 (c.1934T>A, p.L645Q). The absence of mucocutaneous candidiasis and undetectable IgE levels until the age of 7 years prolonged the time to molecular confirmation of the cause for the patient's immune deficiency. STAT3 p.L645Q was found to have decreased transcriptional capacity. The patient also had low levels of Th17 cells and STAT3 phosphorylation was impaired in patient-derived cells. Nearly 100 unique mutations in STAT3 have been reported in association with AD-HIES.

10.
PLoS One ; 8(4): e60640, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593269

RESUMO

The generation of antigen-specific antibodies and the development of immunological memory require collaboration between B and T cells. T cell-secreted IL-4 is important for B cell survival, isotype switch to IgG1 and IgE, affinity maturation, and the development of germinal centers (GC). Fyn, a member of the Src family tyrosine kinase, is widely expressed in many cell types, including lymphocytes. This kinase is known to interact with both the B cell and T cell receptor (BCR and TCR, respectively). While Fyn deletion does not impair the development of immature T cells and B cells, TCR signaling is altered in mature T cells. The current study demonstrates that Fyn deficient (KO) B cells have impaired IL-4 signaling. Fyn KO mice displayed low basal levels of IgG1, IgE and IgG2c, and delayed antigen-specific IgG1 and IgG2b production, with a dramatic decrease in antigen-specific IgG2c following immunization with a T-dependent antigen. Defects in antibody production correlated with significantly reduced numbers of GC B cells, follicular T helper cells (TFH), and splenic plasma cells (PC). Taken together, our data demonstrate that Fyn kinase is required for optimal humoral responses.


Assuntos
Imunidade Humoral , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Animais , Anticorpos/metabolismo , Contagem de Células , Técnicas de Inativação de Genes , Centro Germinativo/citologia , Centro Germinativo/imunologia , Interleucina-4/metabolismo , Camundongos , Plasmócitos/citologia , Plasmócitos/imunologia , Proteínas Proto-Oncogênicas c-fyn/deficiência , Proteínas Proto-Oncogênicas c-fyn/genética , Transdução de Sinais/imunologia , Baço/citologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia
11.
PLoS One ; 7(8): e42694, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22880085

RESUMO

A disintegrin and metalloprotease 10 (ADAM10) is a key regulator of cellular processes by shedding extracellular domains of transmembrane proteins. We have previously demonstrated that deletion of B cell expressed ADAM10 results in changes in lymphoid tissue architecture and impaired germinal center (GC) formation. In this study, mice were generated in which ADAM10 is deleted in B cells following class switch recombination (ADAM10(Δ/Δ)IgG1-cre(+/-) mice). Despite normal GC formation, antibody responses were impaired in ADAM10(Δ/Δ)IgG1-cre(+/-) mice, implicating ADAM10 in post-GC and extrafollicular B cell terminal differentiation. Surprisingly, plasma cell (PC) numbers were normal in ADAM10(Δ/Δ)IgG1-cre(+/-) mice when compared to controls. However, PCs isolated from ADAM10(Δ/Δ)IgG1-cre(+/-) mice exhibited decreased expression of transcription factors important for PC function: Prdm1, Xbp1 and Irf4. Bcl6 is a GC transcriptional repressor that inhibits the PC transcriptional program and thus must be downregulated for PC differentiation to occur. Bcl6 expression was increased in PCs isolated from ADAM10(Δ/Δ)IgG1-cre(+/-) mice at both the mRNA and protein level. These results demonstrate that ADAM10 is required for proper transcription factor expression in PCs and thus, for normal PC function.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , Plasmócitos/metabolismo , Fatores de Transcrição/genética , Proteína ADAM10 , Animais , Formação de Anticorpos/imunologia , Proteínas de Bactérias/metabolismo , Contagem de Células , Separação Celular , Proteínas de Ligação a DNA/metabolismo , Centro Germinativo/imunologia , Imunoglobulina G/metabolismo , Memória Imunológica/imunologia , Integrases/metabolismo , Proteínas Luminescentes/metabolismo , Camundongos , Plasmócitos/imunologia , Proteínas Proto-Oncogênicas c-bcl-6 , Fatores de Transcrição/metabolismo
12.
J Immunol ; 188(9): 4360-8, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22450804

RESUMO

Anaphylaxis is a rapid, life-threatening hypersensitivity reaction. Until recently, it was mainly attributed to histamine released by mast cells activated by allergen crosslinking (XL) of FcεRI-bound allergen-specific IgE. However, recent reports established that anaphylaxis could also be triggered by basophil, macrophage, and neutrophil secretion of platelet-activating factor subsequent to FcγR stimulation by IgG/Ag complexes. We have investigated the contribution of Fyn and Lyn tyrosine kinases to FcγRIIb and FcγRIII signaling in the context of IgG-mediated passive systemic anaphylaxis (PSA). We found that mast cell IgG XL induced Fyn, Lyn, Akt, Erk, p38, and JNK phosphorylation. Additionally, IgG XL of mast cells, basophils, and macrophages resulted in Fyn- and Lyn-regulated mediator release in vitro. FcγR-mediated activation was enhanced in Lyn-deficient (knockout [KO]) cells, but decreased in Fyn KO cells, compared with wild-type cells. More importantly, Lyn KO mice displayed significantly exacerbated PSA features whereas no change was observed for Fyn KO mice, compared with wild-type littermates. Intriguingly, we establish that mast cells account for most serum histamine in IgG-induced PSA. Taken together, our findings establish pivotal roles for Fyn and Lyn in the regulation of PSA and highlight their unsuspected functions in IgG-mediated pathologies.


Assuntos
Anafilaxia/imunologia , Imunoglobulina G/imunologia , Mastócitos/imunologia , Proteínas Proto-Oncogênicas c-fyn/imunologia , Quinases da Família src/imunologia , Alérgenos/genética , Alérgenos/imunologia , Anafilaxia/genética , Anafilaxia/patologia , Animais , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Imunoglobulina G/genética , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/imunologia , Mastócitos/patologia , Camundongos , Camundongos Knockout , Fosforilação/genética , Fosforilação/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-fyn/genética , Receptores de IgG/genética , Receptores de IgG/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Quinases da Família src/genética
13.
J Immunol ; 187(10): 5114-22, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21998451

RESUMO

A disintegrin and metalloproteinase 10 (ADAM10) is a zinc-dependent proteinase related to matrix metalloproteinases. ADAM10 has emerged as a key regulator of cellular processes by cleaving and shedding extracellular domains of multiple transmembrane receptors and ligands. We have developed B cell-specific ADAM10-deficient mice (ADAM10(B-/-)). In this study, we show that ADAM10 levels are significantly enhanced on germinal center B cells. Moreover, ADAM10(B-/-) mice had severely diminished primary and secondary responses after T-dependent immunization. ADAM10(B-/-) displayed impaired germinal center formation, had fewer follicular Th cells, decreased follicular dendritic cell networks, and altered chemokine expression in draining lymph nodes (LNs). Interestingly, when spleen and LN structures from immunized mice were analyzed for B and T cell localization, tissues structure was aberrant in ADAM10(B-/-) mice. Importantly, when ADAM10-deficient B cells were stimulated in vitro, they produced comparable Ab as wild type B cells. This result demonstrates that the defects in humoral responses in vivo result from inadequate B cell activation, likely because of the decrease in follicular Th cells and the changes in structure. Thus, ADAM10 is essential for the maintenance of lymphoid structure after Ag challenge.


Assuntos
Proteínas ADAM/fisiologia , Secretases da Proteína Precursora do Amiloide/fisiologia , Imunidade Humoral , Proteínas de Membrana/fisiologia , Proteínas ADAM/biossíntese , Proteínas ADAM/deficiência , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide/biossíntese , Secretases da Proteína Precursora do Amiloide/deficiência , Animais , Subpopulações de Linfócitos B/enzimologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/patologia , Células CHO , Cricetinae , Centro Germinativo/enzimologia , Centro Germinativo/imunologia , Centro Germinativo/patologia , Imunidade Humoral/genética , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Proteínas de Membrana/biossíntese , Proteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Nódulos Linfáticos Agregados/enzimologia , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/patologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/enzimologia , Subpopulações de Linfócitos T/imunologia , Regulação para Cima/genética , Regulação para Cima/imunologia
14.
Mol Immunol ; 48(11): 1319-27, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21236490

RESUMO

Proteolytic processing of transmembrane receptors and ligands can have a dramatic impact on cell signaling processes and subsequent cellular responses, including activation and differentiation. A member of the disintegrin and metalloproteinase family, ADAM10, has emerged as a prominent regulator of numerous receptors and ligands, including Notch and CD23. Here, we review studies resulting from the recent generation of ADAM10 conditional knockout mice which revealed a critical role for ADAM10 in Notch-dependent lymphocyte development. Additionally, we discuss results of numerous in vitro and ex vivo studies indicating that ADAM10 regulates the production of multiple secreted factors that contribute to autoimmune reactions.


Assuntos
Proteínas ADAM/imunologia , Secretases da Proteína Precursora do Amiloide/imunologia , Autoimunidade/imunologia , Linfócitos B/imunologia , Ativação Linfocitária/imunologia , Proteínas de Membrana/imunologia , Proteínas ADAM/genética , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide/genética , Animais , Formação de Anticorpos/imunologia , Centro Germinativo/imunologia , Humanos , Ativação Linfocitária/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Células Mieloides/imunologia , Receptores Notch/imunologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA