Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(17): e37120, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39296117

RESUMO

Multi-functional textiles have become a growing trend among smart customers who dream of having multiple functionalities in a single product. Thus, this study aimed to develop a multi-functional textile from a common textile substrate like cotton equipped with electrically conductive, anti-bacterial, and flame-retardant properties. Herein, a bunch of compounds from various sources like petro-based poly-aniline (PANI), phosphoric acid (H3PO4), inorganic silver nanoparticles (Ag-NPs), and biomass-sourced fish scale protein (FSP) were used. The coating was prepared via in-situ polymerization of PANI with the cotton substrate, followed by the dipping in AGNPs solution, layer-by-layer deposition of FSP and sodium alginate, and finally, a dip-dry-cure technique after immersing the modified cotton substrate into the H3PO4 and citric acid solution. The key results indicated that the fabric treated with PANI/Ag-NPs/FSP/P-compound exhibited a balanced improvement in all three desired properties as the electrical resistance was reduced by 44.44 % while showing superior bacterial inhibition against gram-positive bacteria (S. aureus) and gram-negative bacteria (E. coli), and produced dense-black carbonaceous char residues, indicating its flame retardant properties as well. Thus, such amicable developments made the cotton textile substrate a multi-functional textile, which showed potential to be used in medical textiles, wearable electronics, fire-fighter suits, etc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA