Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 8: 772033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805253

RESUMO

Viral infections may cause serious human diseases. For instance, the recent appearance of the novel virus, SARS-CoV-2, causing COVID-19, has spread globally and is a serious public health concern. The consumption of healthy, proper, functional, and nutrient-rich foods has an important role in enhancing an individual's immune system and preventing viral infections. Several polysaccharides from natural sources such as algae, bacteria, and fungi have been considered as generally recognized as safe (GRAS) by the US Food and Drug Administration. They are safe, low-toxicity, biodegradable, and have biological activities. In this review, the bioactive polysaccharides derived from various microorganisms, including bacteria, fungi, and algae were evaluated. Antiviral mechanisms of these polysaccharides were discussed. Finally, the potential use of microbial and algal polysaccharides as an antiviral and immune boosting strategy was addressed. The microbial polysaccharides exhibited several bioactivities, including antioxidant, anti-inflammatory, antimicrobial, antitumor, and immunomodulatory activities. Some microbes are able to produce sulfated polysaccharides, which are well-known to exert a board spectrum of biological activities, especially antiviral properties. Microbial polysaccharide can inhibit various viruses using different mechanisms. Furthermore, these microbial polysaccharides are also able to modulate immune responses to prevent and/or inhibit virus infections. There are many molecular factors influencing their bioactivities, e.g., functional groups, conformations, compositions, and molecular weight. At this stage of development, microbial polysaccharides will be used as adjuvants, nutrient supplements, and for drug delivery to prevent several virus infections, especially SARS-CoV-2 infection.

2.
Foods ; 9(12)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321711

RESUMO

Fructooligosaccharides (FOS) are considered prebiotics and have been widely used in various food industries as additives. Ultrasonication has been widely used to enhance food processes; however, there are few reports on ultrasound-assisted FOS synthesis. In the present study, FOS were produced from brown sugar using ultrasonication combined with microbubbles, and the production was optimised using a Box-Behnken experimental design. Here we showed that a combination of ultrasonication and microbubbles could boost the enzyme activity by 366%, and the reaction time was shortened by 60%. The reaction time was a significant variable affecting the FOS production. The optimum conditions were 5 min 45 s of ultrasonication and 7 min 19 s of microbubbles with a reaction time of 5 h 40 min. The maximum enzyme activity and total FOS yield were 102.51 ± 4.69 U·mL-1 and 494.89 ± 19.98 mg·g-1 substrate, respectively. In an enlarged production scale up to 5 L, FOS yields were slightly decreased, but the reaction time was decreased to 4 h. Hence, this technique offers a simple and useful tool for enhancing enzyme activity and reducing reaction time. We have developed a pilot technique as a convenient starting point for enhancing enzyme activity of oligosaccharide production from brown sugar.

3.
Prep Biochem Biotechnol ; 49(7): 649-658, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31012794

RESUMO

In this study, various levels of ultra-high pressure (UHP) were combined with the enzymatic synthesis of the fructooligosaccharide (FOS) using Pectinex Ultra SP-L and inulinase. The combination enhanced the FOS yields up to 2.5- and 1.5-fold, respectively, compared to atmospheric condition (0.1 MPa). However, the enzymatic reaction was dependent on the levels of pressure, the reaction times, and the initial sucrose concentrations. The combined UHP and inulinase showed that the maximum FOS yield (71.81%) was obtained under UHP at 200 MPa for 20 min with 300 g/L of initial sucrose as a substrate, while the FOS yield (57.13%) using Pectinex Ultra SP-L was obtained under UHP at 300 MPa for 15 min with 600 g/L of initial sucrose as a substrate. The FOS composition produced by Pectinex Ultra SP-L under the UHP was 1-kestose (GF2), nystose (GF3), and 1F-fructofuranosylnystose (GF4), whereas the FOS produced by inulinase composed of only GF2 and GF3. The combined UHP is a useful tool in the industrial application for FOS production. Highlights UHP activated the activity of Pectinex Ultra SP-L yet inactivated inulinase Pressure level, time, and sucrose concentration significantly affect FOS yields under UHP UHP enhanced FOS production with time-saving benefits within 15-20 min.


Assuntos
Aspergillus niger/enzimologia , Glicosídeo Hidrolases/metabolismo , Microbiologia Industrial , Oligossacarídeos/metabolismo , Hidrolases/metabolismo , Hidrólise , Microbiologia Industrial/métodos , Pressão , Sacarose/metabolismo , Trissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA