Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35406969

RESUMO

Rice has been shown to respond positively to Si fertilizer in terms of growth and productivity. The objective of this study was to evaluate the effect of a series of Si application rates on grain yield, Si concentration, and the expression of the OsLsi6 gene among three Thai rice varieties. The varieties CNT1, PTT1, and KDML105 were grown in a pot experiment under six levels of Si (0, 100, 150, 200, 250, and 300 kg Si/ha). Grain yield was the highest at 300 kg Si/ha, being increased by 35%, 53%, and 69% in CNT1, PTT1, and KDML105, respectively, compared with the plants grown without added Si. For Si concentrations in rice plants, rising Si fertilizer application up to 150 kg/ha significantly increased the Si concentration in straw, flag leaf, and husk in all varieties. The Si concentration in all tissues was higher under high Si (300 kg Si/ha). Applying Si fertilizer also increased the expression level of OsLsi6 in both CNT1 and PTT1 varieties. The highest expression level of OsLsi6 was associated with 300 kg Si/ha, being increased by 548% in CNT1 and 326% in PTT1 compared with untreated plants. These results indicate that Si application is an effective way to improve rice yield as well as Si concentration, and that the effect is related to the higher expression of the OsLsi6 gene.

2.
J Sci Food Agric ; 101(1): 220-228, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32627188

RESUMO

BACKGROUND: Caryopsis development consists of several processes in the production of grain yield in field crops. This study evaluated the effect of silicon (Si) on spikelet formation, spikelet fertility, and grain filling and its impact on grain yield in rice. RESULTS: Applying Si increased grain yield by 44% in Chainat 1( CNT1) and by 23% in Pathumthani 1 (PTT1). With no Si application, CNT1 had fewer total spikelets, and the fertilized and filled spikelets responded more strongly to Si than PTT1 did. Grain yield in both genotypes increased with increasing number of spikelets and filled fertilized grains. There were close relationships between Si concentration in the shoots, flag leaf, and the husk, which were positively correlated with grain yield, the number of spikelets, and fertilized and filled grains. Applying Si fertilizer also increased the expression level of Lsi6 in both CNT1 and PTT1 by 202% and 144% respectively compared with the expression of plants with no Si supplied. CONCLUSION: This study has shown how rice grain yield can be limited by Si deficiency through the spikelet formation, fertilization, and grain filling processes. Applying Si fertilizer could improve rice grain yield through increasing spikelet formation, fertilization, and grain filling, which is in parallel with Lsi6 gene expression. This information can be used for improving rice productivity by Si fertilization management. © 2020 Society of Chemical Industry.


Assuntos
Oryza/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Silício/farmacologia , Fertilizantes/análise , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/metabolismo
3.
Front Plant Sci ; 11: 1065, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793256

RESUMO

Silicon (Si) is not an essential element, but it is a beneficial element for growth and development of many plant species. Nevertheless, how plants regulate the initial uptake of silicon (Si) remains poorly understood. It has been proposed that the regulation of Si uptake is largely regulated by Si availability. However, the current model is clearly reductionist and does not consider the availability of essential micro-elements such as iron (Fe). Therefore, the present study investigates the regulation of the Si transporter Lsi1, in three rice varieties grown under different Si and Fe regimes. The Lsi1 transcript was compared to intracellular concentrations of Si and Fe in roots. The amount of Lsi1 transcript was mainly altered in response to Si-related treatments. Split-root experiments showed that the expression of Lsi1 is locally and systemically regulated in response to Si signals. Interestingly, the accumulation of Lsi1 transcripts appeared to be dependent on Fe availability in root growth environment. Results suggest that the expression of Lsi1 depends on a regulatory network that integrates Si and Fe signals. This response was conserved in the three rice cultivars tested. This finding is the first step toward a better understanding of the co-regulation of Si homeostasis with other essential nutrients in plants. Finally, our data clearly show that a better understanding of Si/Fe signaling is needed to define the fundamental principles supporting plant health and nutrition.

4.
Int J Mol Sci ; 19(3)2018 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-29562647

RESUMO

Mineral nutrient homeostasis is essential for plant growth and development. Recent research has demonstrated that the occurrence of interactions among the mechanisms regulating the homeostasis of different nutrients in plants is a general rule rather than an exception. Therefore, it is important to understand how plants regulate the homeostasis of these elements and how multiple mineral nutrient signals are wired to influence plant growth. Silicon (Si) is not directly involved in plant metabolism but it is an essential element for a high and sustainable production of crops, especially rice, because of its high content in the total shoot dry weight. Although some mechanisms underlying the role of Si in plants responses to both abiotic and biotic stresses have been proposed, the involvement of Si in regulating plant growth in conditions where the availability of essential macro- and micronutrients changes remains poorly investigated. In this study, the existence of an interaction between Si, phosphate (Pi), and iron (Fe) availability was examined in lowland (Suphanburi 1, SPR1) and upland (Kum Hom Chiang Mai University, KH CMU) rice varieties. The effect of Si and/or Fe deficiency on plant growth, Pi accumulation, Pi transporter expression (OsPHO1;2), and Pi root-to-shoot translocation in these two rice varieties grown under individual or combinatorial nutrient stress conditions were determined. The phenotypic, physiological, and molecular data of this study revealed an interesting tripartite Pi-Fe-Si homeostasis interaction that influences plant growth in contrasting manners in the two rice varieties. These results not only reveal the involvement of Si in modulating rice growth through an interaction with essential micro- and macronutrients, but, more importantly, they opens new research avenues to uncover the molecular basis of Pi-Fe-Si signaling crosstalk in plants.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Deficiências de Ferro , Oryza/crescimento & desenvolvimento , Fosfatos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Silício/metabolismo , Variação Biológica da População , Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas , Ferro/química , Oryza/genética , Fosfatos/química , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Silício/química
5.
Int J Mol Sci ; 18(3)2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28287426

RESUMO

Rice is the main staple crop for one-third of the world population. To maximize yields, large quantities and constant input of fertilizers containing essential nutrients such as phosphorus (P) and iron (Fe) are added. Rice can germinate in both aerobic and anaerobic conditions, but the crosstalk between oxygen (O2) and nutrients such as P and Fe on plant growth remains obscure. The aim of this work was to test whether such interactions exist, and, if so, if they are conserved between up- and lowland rice varieties. To do so, we assessed shoot and root biomass as well as inorganic phosphate (Pi) accumulation in four rice varieties, including two lowland rice varieties Nipponbare and Suphanburi 1 (SPR1) (adapted to non-aerated condition) and two upland rice varieties CMU122 and Sew Mae Jun (SMJ) (adapted to aerated condition) under various conditions of Pi and/or Fe deficiencies, in aerated and non-areated solution. Under these different experimental conditions, our results revealed that the altered shoot biomass in Nipponbare and SPR1 was O2-dependent but to a lesser extent in CMU122 and SMJ cultivars. In this perspective, discovering the biological significance and molecular basis of these mineral elements and O2 signal interaction is needed to fully appreciate the performance of plants to multiple environmental changes.


Assuntos
Deficiências de Ferro , Oryza/metabolismo , Oxigênio/metabolismo , Fósforo/deficiência , Ecossistema , Variação Genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA