RESUMO
A phytochemical investigation of the twig extract of Trivalvaria costata (Hook.f. & Thomson) I.M.Turner has identified ten undescribed dimeric aporphine alkaloids, trivalcostatines A-J, one undescribed isoquinoline alkaloid, trivalcostaisoquinoline, and four known aporphine alkaloids. Their structures were elucidated by detailed analysis of NMR and HRESITOFMS data. Three of the dimeric aporphine structures were confirmed by single crystal X-ray diffraction analysis. All of the dimeric aporphine alkaloids were isolated as mixtures of atropisomers. Several of them were resolved by chiral-phase HPLC and the absolute configurations of the pure atropisomers were assigned by calculated and experimental ECD analysis. Bidebilines A and B, heteropsine, and urabaine showed α-glucosidase inhibitory activities with IC50 values in the range of 4.1-11 µM.
Assuntos
Alcaloides , Annonaceae , Aporfinas , Estrutura Molecular , Aporfinas/farmacologia , Aporfinas/química , Alcaloides/farmacologia , Alcaloides/química , Annonaceae/química , Espectroscopia de Ressonância MagnéticaRESUMO
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global public health crisis. The reduced efficacy of therapeutic monoclonal antibodies against emerging SARS-CoV-2 variants of concern (VOCs), such as omicron BA.5 subvariants, has underlined the need to explore a novel spectrum of antivirals that are effective against existing and evolving SARS-CoV-2 VOCs. To address the need for novel therapeutic options, we applied cell-based high-content screening to a library of natural products (NPs) obtained from plants, fungi, bacteria, and marine sponges, which represent a considerable diversity of chemical scaffolds. The antiviral effect of 373 NPs was evaluated using the mNeonGreen (mNG) reporter SARS-CoV-2 virus in a lung epithelial cell line (Calu-3). The screening identified 26 NPs with half-maximal effective concentrations (EC50) below 50 µM against mNG-SARS-CoV-2; 16 of these had EC50 values below 10 µM and three NPs (holyrine A, alotaketal C, and bafilomycin D) had EC50 values in the nanomolar range. We demonstrated the pan-SARS-CoV-2 activity of these three lead antivirals against SARS-CoV-2 highly transmissible Omicron subvariants (BA.5, BA.2 and BA.1) and highly pathogenic Delta VOCs in human Calu-3 lung cells. Notably, holyrine A, alotaketal C, and bafilomycin D, are potent nanomolar inhibitors of SARS-CoV-2 Omicron subvariants BA.5 and BA.2. The pan-SARS-CoV-2 activity of alotaketal C [protein kinase C (PKC) activator] and bafilomycin D (V-ATPase inhibitor) suggest that these two NPs are acting as host-directed antivirals (HDAs). Future research should explore whether PKC regulation impacts human susceptibility to and the severity of SARS-CoV-2 infection, and it should confirm the important role of human V-ATPase in the VOC lifecycle. Interestingly, we observed a synergistic action of bafilomycin D and N-0385 (a highly potent inhibitor of human TMPRSS2 protease) against Omicron subvariant BA.2 in human Calu-3 lung cells, which suggests that these two highly potent HDAs are targeting two different mechanisms of SARS-CoV-2 entry. Overall, our study provides insight into the potential of NPs with highly diverse chemical structures as valuable inspirational starting points for developing pan-SARS-CoV-2 therapeutics and for unravelling potential host factors and pathways regulating SARS-CoV-2 VOC infection including emerging omicron BA.5 subvariants.
Assuntos
Produtos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Adenosina Trifosfatases , Antivirais/farmacologia , Antivirais/uso terapêutico , Produtos Biológicos/farmacologia , Glicoproteína da Espícula de CoronavírusRESUMO
Phytochemical investigations of the leaf and pod extracts of Millettia brandisiana Kurz led to the isolation and identification of four previously undescribed rotenoids, (-)-(6aS,12aS)-millettiabrandisins A-C and (-)-(6aS,12aS)-6-deoxyclitoriacetal, two previously undescribed isoflavones, millettiabrandisins D and E, and 20 known compounds. The structures of previously undescribed compounds were determined on the basis of NMR and MS data. The absolute configurations of (-)-(6aS,12aS)-millettiabrandisins A-C were determined from the comparison of their experimental and calculated ECD spectra. (-)-(6aR,12aR)-12a-Hydroxy-α-toxicarol was also confirmed by X-ray crystallographic data. Some isolated compounds were evaluated for their cytotoxicity against three cancer cell lines, including lung cancer (A549), colorectal cancer (SW480), and leukemic cells (K562). Of these, α-toxicarol displayed the best cytotoxicity against lung cancer (A549) and leukemic cells (K562) with the IC50 values of 104.4 and 67.5 µM, respectively. 6â³,6â³-Dimethylchromene-[2â³,3â³:7,8]-flavone showed the highest cytotoxicity against colorectal cancer (SW480) with an IC50 value of 97.2 µM.
RESUMO
A phytochemical investigation of the root and leaf extracts of Millettia pachycarpa Benth resulted in the isolation and identification of 16 compounds, including six rotenoids (1-6) and 10 prenylated isoflavonoids (7-16). Compound 4 was isolated as a scalemic mixture, which was resolved by chiral HPLC to afford (-)-(6aS,12aS)-12a-hydroxy-α-toxicarol (4) and (+)-(6aR,12aR)-12a-hydroxy-α-toxicarol (4). (+)-(6aR,12aR)-Millettiapachycarpin (3) and (-)-(6aS,12aS)-12a-hydroxy-α-toxicarol (4) were isolated as new compounds. The absolute configuration of (-)-(6R)-pachycarotenoid (2), (+)-(6aR,12aR)-millettiapachycarpin (3), (-)-(6aS,12aS)-4 and (+)-(6aR,12aR)-12a-hydroxy-α-toxicarol (4), (+)-(6aS,12aS)-(5), and (-)-(6aS,12aS,2â³R)-sumatrol (6) were identified by electronic circular dichroism (ECD) data. (-)-(6aS,12aS,2â³R)-Sumatrol (6) was also confirmed by X-ray diffraction analysis using Cu-Kα radiation. Antidiabetic activities, including α-glucosidase and α-amylase inhibitory activities, and cytotoxicities against lung cancer A549, colorectal cancer SW480, and leukemic K562 cells of some isolated compounds were evaluated. Of these, isolupalbigenin (11) exhibited the highest α-glucosidase inhibitory activity, with an IC50 value of 11.3 ± 0.2 µM, whereas the scalemic mixture of 12a-hydroxy-α-toxicarol (4) displayed the best α-amylase inhibitory activity, with an IC50 value of 106.9 ± 0.2 µM. Euchrenone b10 (15) exhibited the highest cytotoxicity against lung cancer A549, colorectal cancer SW480, and leukemic K562 cells, with IC50 values of 40.3, 39.1, and 15.1 µM, respectively. In addition, molecular docking simulations of α-glucosidase inhibition of the active compounds were studied.
RESUMO
Three previously undescribed isoflavones, derrisrobustones A-C, and a previously undescribed natural isoflavone, derrisrobustone D, along with eight known isoflavones, were isolated from the twig extract of Derris robusta (DC.) Benth. All structures were identified by extensive spectroscopic analysis. Derrisrobustones A-C were obtained as scalemic mixtures and were resolved by chiral HPLC. The (1â³R, 2â³R) absolute configuration of (+)-derrisrobustone B was established by single-crystal X-ray crystallography using Cu Kα radiation. The absolute configurations of derrisrobustones A and C were determined by analysis of experimental and calculated ECD data. All compounds were evaluated for their α-glucosidase inhibitory activity. Of these, derrubone displayed the best α-glucosidase inhibitory activity with an IC50 value of 64.2 µM.
Assuntos
Derris , Isoflavonas , Derris/química , Derris/metabolismo , Isoflavonas/química , Isoflavonas/farmacologia , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , alfa-Glucosidases/metabolismoRESUMO
The first investigation of Phyllanthus mirabilis Müll.Arg. led to the isolation of six undescribed compounds including two tyramine derivatives: phyllatyramines A and B; three butenolide analogues, phyllantenolide, phyllantenocoside-O-gallate and epi-phyllantenocoside-O-gallate; and a flavanonol gallate, (-)-taxifolin-3-O-gallate; as well as two first isolated natural products, phyllatyramine C and phyllantenocoside; together with twenty-three known compounds. Their structures were elucidated by spectroscopic means. ECD spectra of all isolated butenolides were compared and assigned the configurations. Phyllatyramine A displayed weak cytotoxicity against the KB cell line, while phyllatyramines B and C showed weak cytotoxicity against KB and HeLa cell lines. In addition, phyllatyramine B and (-)-taxifolin-3-O-gallate showed more potent α-glucosidase inhibitory activity than the standard acarbose 3.4 and 5.8 fold, respectively.
Assuntos
Mirabilis , Phyllanthus , Carbonato de Cálcio , Células HeLa , Humanos , Folhas de Planta , alfa-GlucosidasesRESUMO
Three new indole diterpenoids, aculeatupenes A-C (1-3), together with four known compounds (4-7), were isolated from the mycelium of Aspergillus aculeatus KKU-CT2. Their structures were established by spectroscopic evidence and absolute configurations of 1-3 were determined by comparison of their experimental and calculated ECD spectra. Compounds 1, 2, and emindole SB (4) showed weak cytotoxicity against HelaS3, KB, HepG2, MCF-7, and A549 cancer cell lines with IC50 values in the range of 11.12-67.81 µM. Compound 3 showed weak cytotoxicity against HelaS3 cell lines with an IC50 value of 17.48 µM but non-cytotoxicity against Vero cell line. In addition, compound 1 exhibited weak antibacterial activity against Bacillus cereus.[Formula: see text].
Assuntos
Diterpenos , Antibacterianos/química , Aspergillus/química , Linhagem Celular Tumoral , Diterpenos/química , Indóis/farmacologia , Estrutura MolecularRESUMO
Three new pyrrolobenzoxazine sesquiterpenoids, talatrachyoxazines Aâ-âC (1: â-â3: ), together with fourteen known compounds (4: â-â17: ), were isolated from the fungus Talaromyces trachyspermus EU23. Their structures were identified by spectroscopic evidence and mass spectrometry. The absolute configurations of 1: â-â3: were determined by NOESY data and comparison of their calculated and experimental electronic circular dichroism (ECD) spectra. Compound 1: showed cytotoxic activity against HelaS3, KB, HT-29, MCF-7, and HepG2 cell lines with IC50 values of 7, 11, 10, 12, and 10 µM, respectively. Compounds 1: and 14: showed weak antibacterial activity against the gram-positive bacteria Bacillus cereus and Bacillus subtilis, while 1: â-â3: and 14: showed weak antibacterial activity against the gram-negative bacterium Pseudomonas aeruginosa. In addition, compound 1: showed weak antibacterial activity against Escherichia coli.
Assuntos
Sesquiterpenos , Talaromyces , Antibacterianos/farmacologia , Células Hep G2 , Humanos , Sesquiterpenos/farmacologiaRESUMO
Three undescribed spirosteroids, asparacemosones A-C, an undescribed spiro-21-norsteroid, asparacemosone D, along with seven known compounds were isolated from Thai herbal plant Asparagus racemosus Willd. roots. Their structures were elucidated by spectroscopic analysis including NMR, UV, IR and mass spectrometry. The absolute configurations of asparacemosones A, B, and D were determined by single crystal X-ray diffraction using CuKα radiation. Among the isolated compounds, the norlignan nyasol and three acetylenic norlignans demonstrated potent α-glucosidase inhibition, with IC50 values ranging from 0.003 to 0.004 µM which is 5 × 104 fold more potent than the standard acarbose.
Assuntos
Asparagus , alfa-Glucosidases , Extratos Vegetais , Raízes de PlantasRESUMO
Six new polyketide-derived oxaphenalenone dimers, talaromycesone C (1) and macrosporusones A-E (2-6), together with eight known analogs, were isolated from the mycelium of the fungus Talaromyces macrosporus KKU-1NK8. Their structures were established based on their spectroscopic data and MS. The absolute configurations of new compounds 1-6 were determined by ECD analyses. Compounds 3 and 8 exhibited antimalarial activity against Plasmodium falciparum. Compound 3 showed activity against NCI-H187 cells, while compound 8 displayed activity against KB, MCF-7 and NCI-H187 cell lines. In addition, compound 11 showed antibacterial activity against Bacillus cereus, Staphylococcus aureus and MRSA.
Assuntos
Antibacterianos/farmacologia , Antimaláricos/farmacologia , Talaromyces/química , Animais , Antibacterianos/isolamento & purificação , Antimaláricos/isolamento & purificação , Bacillus cereus/efeitos dos fármacos , Linhagem Celular Tumoral , Chlorocebus aethiops , Florestas , Humanos , Estrutura Molecular , Plasmodium falciparum/efeitos dos fármacos , Microbiologia do Solo , Staphylococcus aureus/efeitos dos fármacos , Tailândia , Células VeroRESUMO
A new rare lumazine peptide, penilumamide E (1), together with 13 known compounds (2-14) were isolated from the fungus Aspergillus terreus. Their structures were identified by spectroscopic techniques. The relative configuration of 1 was confirmed by single-crystal X-ray diffraction analysis. Compound 10 exhibited antimalarial activity against Plasmodium falciparum with IC50 values of 2.83 µg/mL. Compounds 4 and 6 showed weak cytotoxicity against cholangiocarcinoma (CCA) cell lines. In addition, 4 and 11 exhibited weak cytotoxicity against human hepatoma cell line.