Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anim Microbiome ; 6(1): 27, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745254

RESUMO

BACKGROUND: Exploring the dynamics of gut microbiome colonisation during early-life stages is important for understanding the potential impact of microbes on host development and fitness. Evidence from model organisms suggests a crucial early-life phase when shifts in gut microbiota can lead to immune dysregulation and reduced host condition. However, our understanding of gut microbiota colonisation in long-lived vertebrates, especially during early development, remains limited. We therefore used a wild population of common buzzard nestlings (Buteo buteo) to investigate connections between the early-life gut microbiota colonisation, environmental and host factors. RESULTS: We targeted both bacterial and eukaryotic microbiota using the 16S and 28S rRNA genes. We sampled the individuals during early developmental stages in a longitudinal design. Our data revealed that age significantly affected microbial diversity and composition. Nest environment was a notable predictor of microbiota composition, with particularly eukaryotic communities differing between habitats occupied by the hosts. Nestling condition and infection with the blood parasite Leucocytozoon predicted microbial community composition. CONCLUSION: Our findings emphasise the importance of studying microbiome dynamics to capture changes occurring during ontogeny. They highlight the role of microbial communities in reflecting host health and the importance of the nest environment for the developing nestling microbiome. Overall, this study contributes to understanding the complex interplay between microbial communities, host factors, and environmental variables, and sheds light on the ecological processes governing gut microbial colonisation during early-life stages.

2.
Parasite ; 31: 5, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38334685

RESUMO

Avian haemosporidian parasites (order Haemosporida, phylum Apicomplexa) are blood and tissue parasites transmitted by blood-sucking dipteran insects. Three genera (Plasmodium, Haemoproteus and Leucocytozoon) have been most often found in birds, with over 270 species described and named in avian hosts based mainly on the morphological characters of blood stages. A broad diversity of Haemoproteus parasites remains to be identified and characterized morphologically and molecularly, especially those infecting birds of prey, an underrepresented bird group in haemosporidian parasite studies. The aim of this study was to investigate and identify Haemoproteus parasites from a large sample comprising accipitriform raptors of 16 species combining morphological and new molecular protocols targeting the cytb genes of this parasite group. This study provides morphological descriptions and molecular characterizations of two Haemoproteus species, H. multivacuolatus n. sp. and H. nisi Peirce and Marquiss, 1983. Haemoproteus parasites of this group were so far found in accipitriform raptors only and might be classified into a separate subgenus or even genus. Cytb sequences of these parasites diverge by more than 15% from those of all others known avian haemosporidian genera and form a unique phylogenetic clade. This study underlines the importance of developing new diagnostic tools to detect molecularly highly divergent parasites that might be undetectable by commonly used conventional tools.


Title: Nouveau clade phylogénétique de parasites de rapaces Accipitridae du genre Haemoproteus (Haemosporida, Haemoproteidae), avec description d'une nouvelle espèce d'Haemoproteus. Abstract: Les parasites hémosporidies aviaires (ordre Haemosporida, phylum Apicomplexa) sont des parasites sanguins et tissulaires transmis par des insectes diptères hématophages. Trois genres (Plasmodium, Haemoproteus et Leucocytozoon) ont été le plus souvent trouvés chez les oiseaux, avec plus de 270 espèces décrites et nommées chez les hôtes aviaires en fonction principalement des caractères morphologiques des stades sanguins. Une grande diversité des Haemoproteus reste à identifier et à caractériser morphologiquement et génétiquement, en particulier ceux qui infectent les oiseaux de proie, un groupe d'oiseaux sous-représenté dans les études sur les hémosporidies. Le but de cette étude était d'étudier et d'identifier les Haemoproteus à partir d'un large échantillon comprenant des rapaces accipitriformes de 16 espèces, en combinant des protocoles morphologiques et de nouveaux protocoles moléculaires ciblant les gènes cytb de ce groupe de parasites. Cette étude fournit des descriptions morphologiques et des caractérisations moléculaires de deux espèces d'Haemoproteus, H. multivacuolatus n. sp. et H. nisi Peirce and Marquiss, 1983. Les Haemoproteus de ce groupe n'ont jusqu'à présent été trouvés que chez les rapaces accipitriformes et pourraient être classés dans un sous-genre ou même un genre distinct. Les séquences cytb de ces parasites divergent de plus de 15 % de celles de tous les autres genres d'hémosporidies aviaires connus et forment un clade phylogénétique unique. Cette étude souligne l'importance de développer de nouveaux outils de diagnostic pour détecter des parasites moléculairement très divergents qui pourraient être indétectables par les outils conventionnels couramment utilisés.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Infecções Protozoárias em Animais , Aves Predatórias , Animais , Haemosporida/genética , Filogenia , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Aves , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
3.
Biodivers Data J ; 12: e116889, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405379

RESUMO

Two subspecies of Saker Falcon are commonly accepted - Western (Falcocherrugcherrug) and Eastern (Falcocherrugmilvipes), which are differentiated by their distribution range and phenotype. In Bulgaria, Western Saker Falcons are breeding ex situ in the Wildlife Rehabilitation and Breeding Centre, part of Green Balkans - Stara Zagora NGO, with the aim of restoring the nesting population of the species in the country and both Western and Eastern - in the Breeding Centre for Birds of Prey in Burgas for the purpose of sale for the needs of falconry in the country and abroad. In 2021, a total of 115 birds from the two breeding centres were sampled. The samples were analysed in Bielefeld University (Germany) at nine microsatellite loci. Structure analyses were performed to establish the optimal explanatory number of groups. We compared the putative genetic groups with the known/expected origin of falcons. A separation in two groups best explained the allelic variation between samples. Out of 68 Saker Falcons with putatively Eastern origin, 66 were ascribed to genetic group 2 and two falcons had unclear, mixed or hybrid genetic fingerprints. Out of 42 Sakers with putatively Western origin, 33 were ascribed to genetic group 1, seven to genetic group 2 and two individuals appeared to have a mixed signature of genetic groups 1 and 2 with dominating alleles of group 2. Five known hybrids were scored as mixed signature with dominating genetic cluster 2. This suggests that the two (Eastern and Western) populations of Saker Falcon origin suggested by the subspecies' definitions are also adequate to be considered in breeding programmes. Genetic cluster 1 might represent the ancestral alleles shared with other falcons, while specific novel alleles allow the discrimination of secured Eastern Sakers (group 2), while these populations may be occasionally invaded by individuals from the west.

4.
BMC Ecol Evol ; 23(1): 24, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355591

RESUMO

BACKGROUND: The major histocompatibility complex (MHC), which encodes molecules that recognize various pathogens and parasites and initiates the adaptive immune response in vertebrates, is renowned for its exceptional polymorphism and is a model of adaptive gene evolution. In birds, the number of MHC genes and sequence diversity varies greatly among taxa, believed due to evolutionary history and differential selection pressures. Earlier characterization studies and recent comparative studies suggest that non-passerine species have relatively few MHC gene copies compared to passerines. Additionally, comparative studies that have looked at partial MHC sequences have speculated that non-passerines have opposite patterns of selection on MHC class I (MHC-I) and class II (MHC-II) loci than passerines: namely, greater sequence diversity and signals of selection on MHC-II than MHC-I. However, new sequencing technology is revealing much greater MHC variation than previously expected while also facilitating full sequence variant detection directly from genomic data. Our study aims to take advantage of high-throughput sequencing methods to fully characterize both classes and domains of MHC of a non-passerine bird of prey, the common buzzard (Buteo buteo), to test predictions of MHC variation and differential selection on MHC classes. RESULTS: Using genetic, genomic, and transcriptomic high-throughput sequencing data, we established common buzzards have at least three loci that produce functional alleles at both MHC classes. In total, we characterize 91 alleles from 113 common buzzard chicks for MHC-I exon 3 and 41 alleles from 125 chicks for MHC-IIB exon 2. Among these alleles, we found greater sequence polymorphism and stronger diversifying selection at MHC-IIB exon 2 than MHC-I exon 3, suggesting differential selection pressures on MHC classes. However, upon further investigation of the entire peptide-binding groove by including genomic data from MHC-I exon 2 and MHC-IIA exon 2, this turned out to be false. MHC-I exon 2 was as polymorphic as MHC-IIB exon 2 and MHC-IIA exon 2 was essentially invariant. Thus, comparisons between MHC-I and MHC-II that included both domains of the peptide-binding groove showed no differences in polymorphism nor diversifying selection between the classes. Nevertheless, selection analysis indicates balancing selection has been acting on common buzzard MHC and phylogenetic inference revealed that trans-species polymorphism is present between common buzzards and species separated for over 33 million years for class I and class II. CONCLUSIONS: We characterize and confirm the functionality of unexpectedly high copy number and allelic diversity in both MHC classes of a bird of prey. While balancing selection is acting on both classes, there is no evidence of differential selection pressure on MHC classes in common buzzards and this result may hold more generally once more data for understudied MHC exons becomes available.


Assuntos
Variações do Número de Cópias de DNA , Complexo Principal de Histocompatibilidade , Animais , Filogenia , Alelos , Complexo Principal de Histocompatibilidade/genética , Peptídeos
5.
Biodivers Data J ; 11: e105863, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327296

RESUMO

The globally endangered saker falcon (Falcocherrug) is currently being re-introduced in Bulgaria, where the falcons are bred in captivity and released through the hacking method. We relied on the birds' pedigree when forming the breeding pairs from 2011. In 2021-2022, we had the opportunity to evaluate our captive population via DNA tests. We performed the first genetic assessment of the sakers in the WRBC through a genome evaluation of the most important founders (n = 12) and, in 2022, we executed a microsatellite analysis on 30 saker falcons from the programme. We compared the results with the known pedigree and history of the saker falcons. The genetic tests helped to assign relatedness to some birds with missing or incomplete pedigrees, indicating the test can complement that information and lead to better management of the captive group. One pair was separated as a precaution as it was indicated by one the tests that the two birds are more closely related than expected. The research could be beneficial to other raptor captive breeding programmes dealing with a similar group composition.

7.
Vet Sci ; 9(8)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36006311

RESUMO

Differences in drug tolerability among vertebrate groups and species can create substantial challenges for wildlife and ex situ conservation programmes. Knowledge of tolerance in the use of new drugs is, therefore, important to avoid severe toxicity in species, which are both commonly admitted in veterinary clinics and are of conservation concern. Antimalarial drugs have been developed for use in human medicine, but treatment with different agents has also long been used in avian medicine, as haemosporidian infections play a major role in many avian species. This study investigates the effects of the application of atovaquone-proguanil (Malarone®, GlaxoSmithKline) in common buzzards (Buteo buteo). The potential effects of treatment on body condition, growth rate, and chemical blood parameters of nestlings were assessed. All individuals survived the treatment, and no effects on body condition, growth rate, and chemical blood parameters were observed. Our results suggest the tolerability of Malarone® in common buzzards at a single dose of on average 11 mg/kg body weight. For its safe use, we recommend further studies to determine pharmacokinetics in different avian species as well as to assess the effects of repeated treatment.

8.
Genome Biol Evol ; 14(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35809042

RESUMO

Nuclear copies of mitochondrial genes (numts) are commonplace in vertebrate genomes and have been characterized in many species. However, relatively little attention has been paid to understanding their evolutionary origins and to disentangling alternative sources of insertions. Numts containing genes with intact mitochondrial reading frames represent good candidates for this purpose. The sequences of the genes they contain can be compared with their mitochondrial homologs to characterize synonymous to nonsynonymous substitution rates, which can shed light on the selection pressures these genes have been subjected to. Here, we characterize 25 numts in the Antarctic fur seal (Arctocephalus gazella) genome. Among those containing genes with intact mitochondrial reading frames, three carry multiple substitutions in comparison to their mitochondrial homologs. Our analyses reveal that one represents a historic insertion subjected to strong purifying selection since it colonized the Otarioidea in a genomic region enriched in retrotransposons. By contrast, the other two numts appear to be more recent and their large number of substitutions can be attributed to noncanonical insertions, either the integration of heteroplasmic mtDNA or hybridization. Our study sheds new light on the evolutionary history of pinniped numts and uncovers the presence of hidden sources of mitonuclear variation.


Assuntos
Otárias , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Otárias/genética , Genes Mitocondriais , Genômica
9.
Environ Sci Pollut Res Int ; 29(40): 60908-60921, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35435551

RESUMO

Wildlife exposures to pest controlling substances have resulted in population declines of many predatory species during the past decades. Many pesticides were subsequently classified as persistent, bioaccumulative, and toxic (PBT) and banned on national or global scales. However, despite their risks for non-target vertebrate wildlife, PBT substances such as anticoagulant rodenticides (ARs) are still permitted for use in Europe and have shown to threaten raptors. Whereas risks of ARs are known, much less information is available on emerging agrochemicals such as currently used PPPs and medicinal products (MPs) in higher trophic level species. We expect that currently used PPPs are relatively mobile (vs. lipophilic) as a consequence of the PBT criteria and thus more likely to be present in aqueous matrices. We therefore analyzed blood of 204 raptor nestlings of three terrestrial (red kite, common buzzard, Montagu's harrier) and two aquatic species (white-tailed sea eagle, osprey) from Germany. In total, we detected ARs in 22.6% of the red kites and 8.6% of the buzzards, whereas no Montagu's harriers or aquatic species were exposed prior to sampling. ΣAR concentration tended to be higher in North Rhine-Westphalia (vs. North-Eastern Germany) where population density is higher and intense livestock farming more frequent. Among the 90 targeted and currently used PPPs, we detected six substances from which bromoxynil (14.2%) was most frequent. Especially Montagu's harrier (31%) and red kites (22.6%) were exposed and concentrations were higher in North Rhine-Westphalia as well. Among seven MPs, we detected ciprofloxacin (3.4%), which indicates that risk mitigation measures may be needed as resistance genes were already detected in wildlife from Germany. Taken together, our study demonstrates that raptors are exposed to various chemicals during an early life stage depending on their sampling location and underpins that red kites are at particular risk for multiple pesticide exposures in Germany.


Assuntos
Falconiformes , Aves Predatórias , Rodenticidas , Animais , Animais Selvagens , Anticoagulantes , Monitoramento Ambiental/métodos , Alemanha , Rodenticidas/análise
10.
Int J Parasitol Parasites Wildl ; 16: 236-243, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34760619

RESUMO

Leucocytozoonosis is a vector-borne infection of birds, caused by members of the haemosporidian genus Leucocytozoon. The clinical presentation may range from asymptomatic to severe disease. Consequences of Leucocytozoon infection on blood profiles remain to be described, especially for different host species in the wild. In the current study, the prevalence of Leucocytozoon infection was determined in wild nestlings of three European raptor species, the common buzzard (Buteo buteo, n = 464), red kite (Milvus milvus, n = 46) and northern goshawk (Accipiter gentilis, n = 18). Among 528 nestlings, 51.9% (n = 274) were infected with Leucocytozoon spp., whereby the highest prevalence was found in common buzzards (54.9%), followed by red kites (32.6%) and northern goshawks (22.2%). For a subset of 87 individuals (50 common buzzards, 29 red kites, 8 northern goshawks), a detailed analysis of differential leukocyte counts and several blood chemistry parameters in response to infection was conducted: AP (alkaline phosphatase), AST (aspartate aminotransferase), GLDH (glutamate dehydrogenase), LDH (lactate dehydrogenase), GGT (gamma glutamyl transferase), CK (creatine kinase), BuChE (butyrylcholinesterase), BA (bile acids), ALB (albumin) and TP (total protein). Even though in the physiological range, infected nestlings displayed significantly increased levels of heterophils, aspartate aminotransferase, lactate dehydrogenase, bile acids and butyrylcholinesterase, but decreased lymphocyte and monocyte values compared to uninfected ones. Furthermore, significant species differences with regard to blood parameters, but no sex differences were found. Overall, obtained results show a high prevalence, but a low pathogenicity of Leucocytozoon spp. in wild raptor chicks, presumably resulting from coevolutionary adaptation, but show signatures of infection in the haematological and blood chemistry profiles.

11.
Parasit Vectors ; 14(1): 298, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082829

RESUMO

BACKGROUND: The feeding behavior of bloodsucking insects determines the transmission, distribution, host spectrum and evolution of blood parasites in the wild. Conventional wisdom suggests that some vector groups (e.g. black flies, family Simuliidae) are consistently exophagous daytime biters. We aimed to understand more about the exceptions to this pattern by combining targeted trapping and molecular identification of parasites in vectors. METHODS: In this study, we collected black flies in nest boxes used by European rollers Coracias garrulus in southeastern Spain. We molecularly analyzed 434 individual insects, identifying the black fly species caught in the nest boxes, their potential vertebrate blood meals, and the haemosporidian parasite lineages that they carried. RESULTS: Only one black fly species, Simulium rubzovianum, appeared to enter the nest boxes of rollers. Among the trapped specimens, 15% contained vertebrate DNA, which always belonged to rollers, even though only half of those specimens were visibly engorged. Furthermore, 15% of all black flies contained Leucocytozoon lineages, indicating previous feeding on avian hosts but probably not on infected adult rollers. The known vertebrate hosts of the recorded Leucocytozoon lineages suggested that large and/or abundant birds are their hosts. Particularly represented were cavity-nesting species breeding in the vicinity, such as pigeons, corvids and owls. Open-nesting species such as thrushes and birds of prey were also represented. CONCLUSIONS: Our data strongly suggest that S. rubzovianum bites uninfected roller nestlings and infected individuals of other species, potentially incubating adults, inside nest boxes and natural cavities. This simuliid does not appear to have a strong preference for specific host clades. Contrary to the general pattern for the group, and possibly enhanced by the harsh environmental conditions in the study area, this black fly appeared to intensively use and may even have a preference for confined spaces such as cavities for feeding and resting. Preferences of vectors for atypical microhabitat niches where hosts are less mobile may enable social and within-family transmission and parasite speciation in the long term. At the same time, a lack of host preference in concentrated multispecies communities can lead to host switches. Both processes may be underappreciated driving forces in the evolution of avian blood parasites.


Assuntos
Doenças das Aves/sangue , Doenças das Aves/parasitologia , Comportamento Alimentar , Insetos Vetores/parasitologia , Simuliidae/parasitologia , Animais , Doenças das Aves/etiologia , Sangue , Clima Desértico , Feminino , Insetos Vetores/anatomia & histologia , Insetos Vetores/genética , Insetos Vetores/fisiologia , Refeições , Comportamento de Nidação , Filogenia , Simuliidae/anatomia & histologia , Simuliidae/genética , Simuliidae/fisiologia , Espanha
12.
Artigo em Inglês | MEDLINE | ID: mdl-33801498

RESUMO

Avian haemosporidians are a common and widespread group of vector-borne parasites capable of infecting most bird species around the world. They can negatively affect host condition and fitness. Vultures are assumed to have a very low prevalence of these blood parasites, likely due to their strong immunity; however, factors contributing to variation in host exposure and susceptibility to haemosporidians are complex, and supporting evidence is still very limited. We analyzed blood samples collected from nestlings of three vulture species in Spain over 18 years, and used updated nested-PCR protocols capable of detecting all haesmosporidian cytochrome b lineages typical for diurnal birds of prey (Accipitriformes). Similarly to previous studies, we found low haemosporidian prevalence in cliff-breeding species, with Leucocytozoon as the only represented blood parasite genus: 3.1% in griffon vultures (Gyps fulvus) (n = 128) and 5.3% in Egyptian vultures (Neophron percnopterus) (n = 114). In contrast, the tree-breeding cinereous vulture (Aegypius monachus) had a substantially higher prevalence: 10.3% (n = 146). By far the most common lineage in Spanish scavenging raptors was the Leucocytozoon lineage CIAE02. No effects of nestling age and sex, or temporal trends in prevalence were found, but an effect of nest habitat (tree-nest vs. cliff-nest) was found in the griffon vulture. These patterns may be explained by a preference of vectors to forage in and around trees rather than on cliffs and wide open spaces. We found an apparent detrimental effect of haemosporidians on body mass of nestling cinereous vultures. Further research is needed to evaluate the pathogenicity of each haemosporidian lineage and their interaction with the immune system of nestlings, especially if compromised due to pollution with pharmaceuticals and infection by bacterial and mycotic pathogens.


Assuntos
Doenças das Aves , Parasitos , Animais , Doenças das Aves/epidemiologia , Aves , Hábitos , Melhoramento Vegetal , Espanha/epidemiologia
13.
J Theor Biol ; 509: 110475, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33017577

RESUMO

A deeper understanding of the processes underlying the distribution of animals in space is crucial for both basic and applied ecology. The Common buzzard (Buteo buteo) is a highly aggressive, territorial bird of prey that interacts strongly with its intra- and interspecific competitors. We propose and use random matrix theory to quantify the strength and range of repulsion as a function of the buzzard population density, thus providing a novel approach to model density dependence. As an indicator of territorial behaviour, we perform a large-scale analysis of the distribution of buzzard nests in an area of 300 square kilometres around the Teutoburger Wald, Germany, as gathered over a period of 20 years. The nearest and next-to-nearest neighbour spacing distribution between nests is compared to the two-dimensional Poisson distribution, originating from uncorrelated random variables, to the complex eigenvalues of random matrices, which are strongly correlated, and to a two-dimensional Coulomb gas interpolating between these two. A one-parameter fit to a time-moving average reveals a significant increase of repulsion between neighbouring nests, as a function of the observed increase in absolute population density over the monitored period of time, thereby proving an unexpected yet simple model for density-dependent spacing of predator territories. A similar effect is obtained for next-to-nearest neighbours, albeit with weaker repulsion, indicating a short-range interaction. Our results show that random matrix theory might be useful in the context of population ecology.


Assuntos
Falconiformes , Animais , Aves , Densidade Demográfica , Territorialidade
14.
Parasit Vectors ; 13(1): 309, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32539849

RESUMO

BACKGROUND: The behaviour of blood-sucking arthropods is a crucial determinant of blood protozoan distribution and hence of host-parasite coevolution, but it is very challenging to study in the wild. The molecular identification of parasite lineages in vectors can be a useful key to understand the behaviour and transmission patterns realised by these vectors. METHODS: In this study, we collected blackflies around nests of three raptor species in the upper forest canopy in central Europe and examined the presence of vertebrate DNA and haemosporidian parasites in them. We molecularly analysed 156 blackfly individuals, their vertebrate blood meals, and the haemosporidian parasite lineages they carried. RESULTS: We identified nine species of Simulium blackflies, largely belonging to the subgenera Nevermannia and Eusimulium. Only 1% of the collected specimens was visibly engorged, and only 4% contained remains of host DNA. However, in 29% of the blackflies Leucocytozoon lineages were identified, which is evidence of a previous blood meal on an avian host. Based on the known vertebrate hosts of the recorded Leucocytozoon lineages, we can infer that large and/or abundant birds, such as thrushes, crows, pigeons, birds of prey, owls and tits are the main targets of ornithophilic blackflies in the canopy. Blackfly species contained similar proportions of host group-specific parasite lineages and thus do not appear to be associated with particular host groups. CONCLUSIONS: The Leucocytozoon clade infecting thrushes, crows, and pigeons present in most represented blackfly species suggests a lack of association between hosts and blackflies, which can increase the probability of host switches of blood parasites. However, the composition of the simuliid species differed between nests of common buzzards, goshawks and red kites. This segregation can be explained by coinciding habitat preferences between host and vector, and may lead to the fast speciation of Leucocytozoon parasites. Thus, subtle ecological preferences and lack of host preference of vectors in the canopy may enable both parasite diversification and host switches, and enforce a habitat-dependent evolution of avian malaria parasites and related haemosporidia.


Assuntos
Sangue , DNA/genética , Florestas , Haemosporida/classificação , Simuliidae/parasitologia , Animais , Doenças das Aves/parasitologia , DNA/isolamento & purificação , Feminino , Haemosporida/isolamento & purificação , Especificidade de Hospedeiro , Insetos Vetores/parasitologia , Insetos Vetores/fisiologia , Refeições , Filogenia , Aves Predatórias/genética , Aves Predatórias/parasitologia , Simuliidae/fisiologia
15.
Mol Ecol ; 29(11): 2109-2122, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32060961

RESUMO

The gut microbiome is an integral part of a species' ecology, but we know little about how host characteristics impact its development in wild populations. Here, we explored the role of such intrinsic factors in shaping the gut microbiome of northern elephant seals (Mirounga angustirostris) during a critical developmental window of 6 weeks after weaning, when the pups stay ashore without feeding. We found substantial sex differences in the early-life gut microbiome, even though males and females could not yet be distinguished morphologically. Sex and age both explained around 15% of the variation in gut microbial beta diversity, while microbial communities sampled from the same individual showed high levels of similarity across time, explaining another 40% of the variation. Only a small proportion of the variation in beta diversity was explained by health status, assessed by full blood counts, but clinically healthy individuals had a greater microbial alpha diversity than their clinically abnormal peers. Across the post-weaning period, the northern elephant seal gut microbiome was highly dynamic. We found evidence for several colonization and extinction events as well as a decline in Bacteroides and an increase in Prevotella, a pattern that has previously been associated with the transition from nursing to solid food. Lastly, we show that genetic relatedness was correlated with gut microbiome similarity in males but not females, again reflecting early sex differences. Our study represents a naturally diet-controlled and longitudinal investigation of how intrinsic factors shape the early gut microbiome in a species with extreme sex differences in morphology and life history.


Assuntos
Microbioma Gastrointestinal , Focas Verdadeiras/microbiologia , Caracteres Sexuais , Animais , Feminino , Masculino
16.
R Soc Open Sci ; 7(12): 201356, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33489280

RESUMO

By 2040, roughly two-thirds of humanity are expected to live in urban areas. As cities expand, humans irreversibly transform natural ecosystems, creating both opportunities and challenges for wildlife. Here, we investigate how the Northern Goshawk (Accipiter gentilis) is adjusting to urban environments. We measured a variety of behavioural and ecological parameters in three urban and four rural study sites. City life appeared related to all parameters we measured. Urban female goshawks were overall 21.7 (CI95% 5.13-130) times more likely to defend their nestlings from humans than rural females. Urban goshawks were 3.64 (CI95% 2.05-6.66) times more likely to feed on pigeons and had diets exhibiting lower overall species richness and diversity. Urban females laid eggs 12.5 (CI95% 7.12-17.4) days earlier than rural individuals and were 2.22 (CI95% 0.984-4.73) times more likely to produce a brood of more than three nestlings. Nonetheless, urban goshawks suffered more from infections with the parasite Trichomonas gallinae, which was the second most common cause of mortality (14.6%), after collisions with windows (33.1%). In conclusion, although city life is associated with significant risks, goshawks appear to thrive in some urban environments, most likely as a result of high local availability of profitable pigeon prey. We conclude that the Northern Goshawk can be classified as an urban exploiter in parts of its distribution.

17.
Front Zool ; 16: 31, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31406493

RESUMO

BACKGROUND: Selecting high-quality habitat and the optimal time to reproduce can increase individual fitness and is a strong evolutionary factor shaping animal populations. However, few studies have investigated the interplay between land cover heterogeneity, limitation in food resources, individual quality and spatial variation in fitness parameters. Here, we explore how individuals of different quality respond to possible mismatches between a cue for prey availability (land cover heterogeneity) and the actual fluctuating prey abundance. RESULTS: We analyse timing of breeding and reproductive success in a migratory population of Eurasian kestrels (Falco tinnunculus) breeding in nest-boxes, over a full three-year abundance cycle of main prey (voles), and consider several components of individual quality, including body condition, blood parasite infection, and genetic diversity (n = 448 adults) that act on different time scales. Older individuals, and kestrel parents in higher body condition started egg-laying earlier than younger birds and those in lower body condition. Additionally, egg-laying was initiated earlier during the increase and decrease phases (2011 and 2012) than during the low phase of the vole cycle (2013). Nestling survival (ratio of eggs that fledged successfully) was higher in early nests and in heterogeneous landscapes (i.e., mosaic of different habitat types), which was evident during the increase and decrease phases of the vole cycle, but not during the low vole year. CONCLUSIONS: We found a strong positive effect of landscape heterogeneity on nestling survival, but only when voles were relatively abundant, whereas a difference in the timing of breeding related to territory landscape heterogeneity was not evident. Therefore, landscape heterogeneity appeared as the main driver of high reproductive performance under favourable food conditions. Our results show that landscape homogenization linked to agricultural intensification disrupts the expected positive effect of vole abundance on reproductive success of kestrels.

18.
Malar J ; 17(1): 33, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29338711

RESUMO

BACKGROUND: Blood parasites have been studied intensely in many families of avian hosts, but corvids, a particularly cosmopolitan family, remain underexplored. Haemosporidian parasites of the common raven (Corvus corax) have not been studied, although it is the largest, most adaptable, and widespread corvid. Genetic sequence data from parasites of ravens can enhance the understanding of speciation patterns and specificity of haemosporidian parasites in corvids, and shed light how these hosts cope with parasite pressure. METHODS: A baited cage trap was used to catch 86 ravens and a nested PCR protocol was used to amplify a 479 bp fragment of the haemosporidian cytochrome b gene from the samples. The obtained sequences were compared with the MalAvi database of all published haemosporidian lineages and a phylogenetic tree including all detected raven parasites was constructed. An examination of blood smears was performed for assessment of infection intensity. RESULTS: Twenty blood parasite lineages were recovered from ravens caught in a wild population in Bulgaria. The prevalence of generalist Plasmodium lineages was 49%, and the prevalence of Leucocytozoon lineages was 31%. Out of 13 detected Leucocytozoon lineages six were known from different corvids, while seven others seem to be specific to ravens. A phylogenetic reconstruction suggests that Leucocytozoon lineages of ravens and other corvids are not monophyletic, with some groups appearing closely related to parasites of other host families. CONCLUSIONS: Several different, morphologically cryptic groups of Leucocytozoon parasites appear to infect corvids. Ravens harbour both generalist corvid Leucocytozoon as well as apparently species-specific lineages. The extraordinary breeding ecology and scavenging lifestyle possibly allow ravens to evade vectors and have relatively low blood parasite prevalence compared to other corvids.


Assuntos
Doenças das Aves/epidemiologia , Corvos , Haemosporida/isolamento & purificação , Infecções Protozoárias em Animais/epidemiologia , Animais , Doenças das Aves/parasitologia , Bulgária/epidemiologia , Citocromos b/análise , Haemosporida/classificação , Filogenia , Infecções Protozoárias em Animais/parasitologia , Proteínas de Protozoários/análise
19.
J Anim Ecol ; 85(3): 774-84, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26781959

RESUMO

Intraguild predation (IGP) is a commonly recognized mechanism influencing the community structure of predators, but the complex interactions are notoriously difficult to disentangle. The mesopredator suppression hypothesis predicts that a superpredator may either simultaneously repress two mesopredators, restrain the dominant one and thereby release the subdominant mesopredator, or elicit different responses by both mesopredators. We show the outcome arising from such conditions in a three-level predator assemblage (Eurasian eagle owl Bubo bubo L., northern goshawk Accipiter gentilis L. and common buzzard Buteo buteo L.) studied over 25 years. In the second half of the study period, the eagle owl re-colonized the study area, thereby providing a natural experiment of superpredator introduction. We combined this set-up with detailed GIS analysis of habitat use and a field experiment simulating intrusion by the superpredator into territories of the subdominant mesopredator, the buzzard. Although population trends were positive for all three species in the assemblage, the proportion of failed breeding attempts increased significantly in both mesopredators after the superpredator re-colonized the area. We predicted that superpredator-induced niche shifts in the dominant mesopredator may facilitate mesopredator coexistence in superpredator-free refugia. We found significant changes in nesting habitat choice in goshawk, but not in buzzard. Since competition for enemy-free refugia and the rapid increase in population density may have constrained niche shifts of the subdominant mesopredator, we further predicted behavioural changes in response to the superpredator. The field experiment indeed showed a significant increase in aggressive response of buzzards towards eagle owl territory intrusion over the course of 10 years, probably due to phenotypic plasticity in the response towards superpredation risk. Overall, our results show that intraguild predation can be a powerful force of behavioural change, simultaneously influencing habitat use and aggressiveness in predator communities. These changes might help to buffer mesopredator populations against the negative effects of intraguild predation.


Assuntos
Ecossistema , Falconiformes/fisiologia , Comportamento de Nidação , Comportamento Predatório , Reprodução/fisiologia , Estrigiformes/fisiologia , Animais , Comportamento Competitivo , Feminino , Sistemas de Informação Geográfica , Alemanha , Masculino , Dinâmica Populacional , Territorialidade
20.
BMC Genomics ; 16: 1038, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26645667

RESUMO

BACKGROUND: Studies of non-model species are important for understanding the molecular processes underpinning phenotypic variation under natural ecological conditions. The common buzzard (Buteo buteo; Aves: Accipitriformes) is a widespread and common Eurasian raptor with three distinct plumage morphs that differ in several fitness-related traits, including parasite infestation. To provide a genomic resource for plumage polymorphic birds in general and to search for candidate genes relating to fitness, we generated a transcriptome from a single dead buzzard specimen plus easily accessible, minimally invasive samples from live chicks. RESULTS: We not only de novo assembled a near-complete buzzard transcriptome, but also obtained a significant fraction of the transcriptome of its malaria-like parasite, Leucocytozoon buteonis. By identifying melanogenesis-related transcripts that are differentially expressed in light ventral and dark dorsal feathers, but which are also expressed in other regions of the body, we also identified a suite of candidate genes that could be associated with fitness differences among the morphs. These include several immune-related genes, providing a plausible link between melanisation and parasite load. qPCR analysis of a subset of these genes revealed significant differences between ventral and dorsal feathers and an additional effect of morph. CONCLUSION: This new resource provides preliminary insights into genes that could be involved in fitness differences between the buzzard colour morphs, and should facilitate future studies of raptors and their malaria-like parasites.


Assuntos
Biologia Computacional , Genômica , Haemosporida/genética , Polimorfismo Genético , Aves Predatórias/genética , Aves Predatórias/parasitologia , Transcriptoma , Sequência de Aminoácidos , Animais , Biologia Computacional/métodos , Regulação da Expressão Gênica , Marcadores Genéticos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Melaninas/metabolismo , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Dados de Sequência Molecular , Aves Predatórias/metabolismo , Reprodutibilidade dos Testes , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA