Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36671669

RESUMO

This paper presents the ultrastructure morphology of Nabis rugosus trichoid sensilla using SEM and TEM data, along with a two-dimensional model of the trichoid sensilla developed in Amira software. The SEM images show the shape and scattering of the trichoid mechanosensilla over the N. rugosus flagellomere. The TEM images present the ultrastructural components, in which the hair rises from the socket via the joint membrane. The dendrite sheath is connected at the base of the hair shaft, surrounded by the lymph space and the socket septum. This dendrite sheath contains a tubular body with microtubules separated by the membrane (M) and granules (Gs). This study presents a model and simulation of the trichoid sensilla sensing mechanism, in which the hair deflects due to the application of external loading above it and presses the dendrite sheath attached to the hair base. The dendrite sheath is displaced by the applied force, transforming the transversal loading into a longitudinal deformation of the microtubules. Due to this longitudinal deformation, electric potential develops in the microtubule's core, and information is delivered to the brain through the axon. The sensilla's pivot point or point of rotation is presented, along with the relationship between the hair shaft length, the pivot point, and the electric potential distribution in the microtubules. This study's results can be used to develop ultra-sensitive, bioinspired sensors based on these ultrastructural components and their biomechanical studies.

2.
Insects ; 13(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36135500

RESUMO

The present study aims to investigate the morphological features of the antennal sensilla by using SEM and TEM. The construction of a 3D model of trichoideum sensillum using Amira software is presented in this paper. Five sensillum types, namely trichoideum, chaeticum, campaniformium, coeloconicum, and basiconicum, were recorded. This model exhibits the mechanosensillum components, including the embedded hair in a socket attached by the joint membrane and the dendrite connected to the hair base passing through the cuticle layers. TEM images present the dendrite way, micro-tubules inside the dendritic sheath, and terminal structure of the tubular dendrite body and so-called companion cells included in the receptor, e.g., tormogen and trichogen. The parameters noted for the external structure and ultrastructure of the mechano-receptor indicate that they are specific to a particular type of sensillum and would be useful in developing the model for a biosensor. Results show that bio-inspired sensors can be developed based on morphological and ultrastructural studies and to conduct mechanical studies on their components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA