Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(13): 16687-16698, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517362

RESUMO

Industrial emissions, environmental monitoring, and medical fields have put forward huge demands for high-performance and low power consumption sensors. Two-dimensional quasicrystal (2D QC) nanosheets of metallic multicomponent Al70Co10Fe5Ni10Cu5 have emerged as a promising material for gas sensors due to their excellent catalytic and electronic properties. Herein, we demonstrate highly sensitive and selective NO2 sensors developed by low-cost and scalable fabrication techniques using 2D QC nanosheets and α-Fe2O3 nanoparticles. The sensitivity (ΔR/R%) of the optimal amount of 2D QC nanosheet-loaded α-Fe2O3 sensor was 32%, which is significantly larger about 3.5 times than bare α-Fe2O3 sensors for 1 ppm of NO2 at 150 °C operating temperature. The sensors exhibited p-type conduction, and resistance was reduced when exposed to NO2, an oxidizing gas. The enhanced sensing characteristics are a result of the formation of nanoheterojunctions between 2D QC and α-Fe2O3, which improved the charge transport and provided a large sensing signal. In addition, the heterojunction sensor demonstrated excellent NO2 selectivity over other oxidizing and reducing gases. Furthermore, density functional theory calculation examines the adsorption energy and charge transfer between NO2 molecules on the α-Fe2O3(110) and QC/α-Fe2O3(110) heterostructure surfaces, which coincides well with the experimental results.

2.
Phys Chem Chem Phys ; 25(26): 17143-17153, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37350266

RESUMO

The efficient monitoring and early detection of viruses may provide essential information about diseases. In this work, we have highlighted the interaction between DNA and a two-dimensional (2D) metal oxide for developing biosensors for further detection of viral infections. Spectroscopic measurements have been used to probe the efficient interactions between single-stranded DNA (ssDNA) and the 2D metal oxide and make them ideal candidates for detecting viral infections. We have also used fully atomistic molecular dynamics (MD) simulation to give a microscopic understanding of the experimentally observed ssDNA-metal oxide interaction. The adsorption of ssDNA on the inorganic surface was found to be driven by favourable enthalpy change, and 5'-guanine was identified as the interacting nucleotide base. Additionally, the in silico assessment of the conformational changes of the ssDNA chain during the adsorption process was also performed in a quantitative manner. Finally, we comment on the practical implications of these developments for sensing that could help design advanced systems for preventing virus-related pandemics.


Assuntos
Técnicas Biossensoriais , Vírus , DNA , DNA de Cadeia Simples , Técnicas Biossensoriais/métodos , Óxidos/química , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA