Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(19): 13083-13092, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701172

RESUMO

Lanthanide metal clusters excel in combining molecular and material chemistry properties. Here, we report an efficient cooperative sensitization UC phenomenon of a Eu3+/Yb3+ nonanuclear lanthanide cluster in CD3OD. The synthesis and characterization of the heteronuclear cluster in the solid state and solution are described together with the UC phenomenon showing Eu3+ luminescence in the visible region upon 980 nm NIR excitation of Yb3+ at concentrations as low as 100 nM. Alongside being the Eu/Yb cluster to display UC (with a quantum yield value of 4.88 × 10-8 upon 1.13 W cm-2 excitation at 980 nm), the cluster exhibits downshifted light emission of Yb3+ in the NIR region upon 578 nm visible excitation of Eu3+, which is ascribed to sensitization pathways for Yb through the 5D0 energy levels of Eu3+. Additionally, a faint emission is also observed at ca. 500 nm upon 980 nm excitation, originating from the cooperative luminescence of Yb3+. The [Eu8Yb(BA)16(OH)10]Cl cluster (BA = benzoylacetonate) is also a field-induced single-molecular magnet (SMM) under 4K with a modest Ueff/kB of 8.48 K, thereby joining the coveted list of Yb-SMMs and emerging as a prototype system for next-generation devices, combining luminescence with single-molecular magnetism in a molecular cluster.

2.
Nanoscale ; 16(4): 1446-1470, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38032061

RESUMO

Nanoparticles (NPs) with atomic precision, known as nanoclusters (NCs), are an emerging field in materials science in view of their fascinating structure-property relationships. Ultrasmall noble metal NPs have molecule-like properties that make them fundamentally unique compared with their plasmonic counterparts and bulk materials. In this review, we present a comprehensive account of the chemistry of monolayer-protected atomically precise noble metal nanoclusters with a focus on the chemical reactions, their diversity, associated kinetics, and implications. To begin with, we briefly review the history of the evolution of such precision materials. Then the review explores the diverse chemistry of noble metal nanoclusters, including ligand exchange reactions, ligand-induced structural transformations, and reactions with metal ions, metal thiolates, and halocarbons. Just as molecules do, these precision materials also undergo intercluster reactions in solution. Supramolecular forces between these systems facilitate the creation of well-defined hierarchical assemblies, composites, and hybrid materials. We conclude the review with a future perspective and scope of such chemistry.

3.
J Phys Chem Lett ; 14(51): 11659-11664, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38109267

RESUMO

Vacancy defects are known to have significant effects on the physical and chemical properties of nanomaterials. However, the formation and structural dynamics of vacancy defects in atomically precise coinage metal clusters have hardly been explored due to the challenges associated with isolation of such defected clusters. Herein, we isolate [Ag28(BDT)12]2- (BDT is 1,3-benzenedithiol), a cluster with a "missing atom" site compared to [Ag29(BDT)12]3-, whose precise structure is known from X-ray diffraction. [Ag28(BDT)12]2- was formed in the gas-phase by collisional heating of [Ag28Hg(BDT)12]2-, a Hg-doped analogue of the parent cluster. The structural changes resulting from the loss of the Hg heteroatom were investigated by trapped ion mobility mass spectrometry. Density functional theory calculations were performed to provide further insights into the defect structures, and molecular dynamics simulations revealed defect site-dependent structural relaxation processes.

4.
Angew Chem Int Ed Engl ; 62(29): e202305836, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37216325

RESUMO

Fragmentation dynamics of ligated coinage metal clusters reflects their structural and bonding properties. So far methodological challenges limited probing structures of the fragments. Herein, we resolve the geometric structures of the primary fragments of [Ag29 L12 ]3- , i.e. [Ag24 L9 ]2- , [Ag19 L6 ]- and [Ag5 L3 ]- (L is 1,3-benzene dithiolate). For this, we used trapped ion mobility mass spectrometry to determine collision cross sections of the fragments and compared them to structures calculated by density functional theory. We also report that following two sequential [Ag5 L3 ]- elimination steps, further dissociation of [Ag19 L6 ]- also involves a new channel of Ag2 loss and Ag-S and C-S bond cleavages. This reflects a competition between retaining the electronic stability of 8 e- superatom cluster cores and increasing steric strain of ligands and staples. These results are also of potential interest for future soft-landing deposition studies aimed at probing catalytic behavior of Ag clusters on supports.

5.
J Am Soc Mass Spectrom ; 34(4): 676-684, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36952473

RESUMO

Cyclodextrin (CD) macrocycles are used to create a wide range of supramolecular architectures which are also of interest in applications such as selective gas adsorption, drug delivery, and catalysis. However, predicting their assemblies and identifying the possible isomers in CD oligomers have always remained challenging due to their dynamic nature. Herein, we interacted CDs (α, ß, and γ) with a divalent metal ion, Cu2+, to create a series of Cu2+-linked CD oligomers, from dimers to pentamers. We characterized these oligomers using electrospray ionization mass spectrometry and probed isomerism in each of these isolated oligomers using high resolution trapped ion mobility spectrometry. Using this technique, we separated multiple isomers for each of the Cu2+-interlinked CD oligomers and estimated their relative population, which was not accessible previously using other characterization techniques. We further carried out structural analysis of the observed isomers by comparing the experimental collision cross sections (CCSs) to that of modeled structures. We infer that the isomeric heterogeneity reflects size-specific packing patterns of individual CDs (e.g., close-packed/linear). In some cases, we also reveal the existence of kinetically trapped structures in the gas phase and study their transformation to thermodynamically controlled forms by examining the influence of activation of the ions on isomer interconversion.

6.
Chem Sci ; 14(6): 1613-1626, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36794193

RESUMO

Atomically precise nanomaterials with tunable solid-state luminescence attract global interest. In this work, we present a new class of thermally stable isostructural tetranuclear copper nanoclusters (NCs), shortly Cu4@oCBT, Cu4@mCBT and Cu4@ICBT, protected by nearly isomeric carborane thiols: ortho-carborane-9-thiol, meta-carborane-9-thiol and ortho-carborane 12-iodo 9-thiol, respectively. They have a square planar Cu4 core and a butterfly-shaped Cu4S4 staple, which is appended with four respective carboranes. For Cu4@ICBT, strain generated by the bulky iodine substituents on the carboranes makes the Cu4S4 staple flatter in comparison to other clusters. High-resolution electrospray ionization mass spectrometry (HR ESI-MS) and collision energy-dependent fragmentation, along with other spectroscopic and microscopic studies, confirm their molecular structure. Although none of these clusters show any visible luminescence in solution, bright µs-long phosphorescence is observed in their crystalline forms. The Cu4@oCBT and Cu4@mCBT NCs are green emitting with quantum yields (Φ) of 81 and 59%, respectively, whereas Cu4@ICBT is orange emitting with a Φ of 18%. Density functional theory (DFT) calculations reveal the nature of their respective electronic transitions. The green luminescence of Cu4@oCBT and Cu4@mCBT clusters gets shifted to yellow after mechanical grinding, but it is regenerated after exposure to solvent vapour, whereas the orange emission of Cu4@ICBT is not affected by mechanical grinding. Structurally flattened Cu4@ICBT didn't show mechanoresponsive luminescence in contrast to other clusters, having bent Cu4S4 structures. Cu4@oCBT and Cu4@mCBT are thermally stable up to 400 °C. Cu4@oCBT retained green emission even upon heating to 200 °C under ambient conditions, while Cu4@mCBT changed from green to yellow in the same window. This is the first report on structurally flexible carborane thiol appended Cu4 NCs having stimuli-responsive tunable solid-state phosphorescence.

7.
Nanoscale ; 15(6): 2690-2699, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36651628

RESUMO

Quantized energy levels and unique optoelectronic properties of atomically precise noble metal nanoclusters (NCs) have made them important in materials science, catalysis, sensors, and biomedicine. Recent studies on the profound chemical interactions of such NCs within themselves and with ultrasmall plasmonic nanoparticles (NPs) indicate that depending on the size, shape, and composition of the second reactant, NCs can either take part in colloidal assembly without any chemical modifications or lead to products with atoms exchanged. Anisotropic NPs are a unique class of plasmonic nanomaterials as their sharp edges and protrusions show higher chemical reactivity compared to flat surfaces, often leading to site-specific growth of foreign metals and metal oxide shells. Here, using chemical interactions between gold nanotriangles (AuNTs) and Ag NCs of different compositions, we show for the first time that metal atom etching, alloying/atom exchange, and colloidal assembly can all happen at a particular length scale. Specifically, Ag25(DMBT)18 NCs (denoted as 1), upon reacting with AuNTs of ∼57 nm edge length, etch gold atoms from their sharp tips and edges. Simultaneously, the two nanosystems exchange metal atoms, resulting in Ag-doped AuNTs and AuxAg24-x(DMBT)18 (x = 1, 2). However, another Ag NC with the same metallic core, but a different ligand shell, namely, Ag25H22(DPPE)8 (denoted as 2), creates dendritic shells made of Ag, surrounding these AuNTs under the same reaction conditions. Furthermore, we show that in the case of a more reactive thiol-protected Ag NC, namely, Ag44(pMBA)30 (denoted as 3), gold etching is faster from the edges and tips, which drastically alters the identities of both the reactants. Interestingly, when the AuNTs are protected by pMBA, 3 systematically assembles on AuNTs through H-bonding, resulting in an AuNT core-Ag NC shell nanocomposite. Thus, while shedding light on various factors affecting the reactivity of Ag NCs towards AuNTs, the present study proposes a single strategy to obtain a number of bimetallic nanosystems of targeted morphology and functionality.

8.
J Am Chem Soc ; 144(29): 13084-13095, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35850489

RESUMO

Insufficient binding selectivity of chemosensors often renders biorelevant metabolites indistinguishable by the widely used indicator displacement assay. Array-based chemosensing methods are a common workaround but require additional effort for synthesizing a chemosensor library and setting up a sensing array. Moreover, it can be very challenging to tune the inherent binding preference of macrocyclic systems such as cucurbit[n]urils (CBn) by synthetic means. Using a novel cucurbit[7]uril-dye conjugate that undergoes salt-induced adaptation, we now succeeded in distinguishing 14 bioorganic analytes from each other through the facile stepwise addition of salts. The salt-specific concentration-resolved emission provides additional information about the system at a low synthetic effort. We present a data-driven approach to translate the human-visible curve differences into intuitive pairwise difference measures. Ion mobility experiments combined with density functional theory calculations gave further insights into the binding mechanism and uncovered an unprecedented ternary complex geometry for CB7. TThis work introduces the non-selectively binding, salt-adaptive cucurbit[n]uril system for sensing applications in biofluids such as urine, saliva, and blood serum.


Assuntos
Hidrocarbonetos Aromáticos com Pontes , Imidazóis , Compostos Heterocíclicos com 2 Anéis , Humanos , Imidazolidinas , Compostos Macrocíclicos
9.
Phys Chem Chem Phys ; 24(4): 2332-2343, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35018393

RESUMO

We investigated the gas phase fragmentation events of highly symmetric fullerene-like (FN-like) titanium oxo-cluster anions, [H12Ti42O60(OCH3)42(HOCH3)10(H2O)2]2- (1) and [H7Ti42O60(OCH3)42(HOCH3)10(H2O)3]1- (2). These oxo-clusters contain a closed cage Ti42O60 core, protected by a specific number of methoxy, methanol, and water molecules acting as ligands. These dianionic and monoanionic species were generated in the gas phase by electrospray ionization of the H6[Ti42(µ3-O)60(OiPr)42(OH)12] (TOF) cluster in methanol. Collision induced dissociation studies of 1 revealed that upon increasing the collision energy, the protecting ligands were stripped off first, and [Ti41O58]2- was formed as the first fragment from the Ti42O60 core. Thereafter, systematic TiO2 losses were observed giving rise to subsequent fragments like [Ti40O56]2-, [Ti39O54]2-, [Ti38O52]2-, etc. Similar fragments were also observed for monoanionic species 2 as well. Systematic 23 TiO2 losses were observed, which were followed by complete shattering of the cage. We also carried out computational studies using density functional theory (DFT) to investigate the structures and fragmentation mechanism. The fragmentation of TOF was comparable to the fragmentation of C60 ions, where systematic C2 losses were observed. We believe that this is a consequence of topological similarity. The present study provides valuable insights into the structural constitution of TOF clusters and stability of the parent as well as the resulting cage-fragments in the gas phase.

10.
Molecules ; 26(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34946561

RESUMO

The current trend for ultra-high-field magnetic resonance imaging (MRI) technologies opens up new routes in clinical diagnostic imaging as well as in material imaging applications. MRI selectivity is further improved by using contrast agents (CAs), which enhance the image contrast and improve specificity by the paramagnetic relaxation enhancement (PRE) mechanism. Generally, the efficacy of a CA at a given magnetic field is measured by its longitudinal and transverse relaxivities r1 and r2, i.e., the longitudinal and transverse relaxation rates T1-1 and T2-1 normalized to CA concentration. However, even though basic NMR sensitivity and resolution become better in stronger fields, r1 of classic CA generally decreases, which often causes a reduction of the image contrast. In this regard, there is a growing interest in the development of new contrast agents that would be suitable to work at higher magnetic fields. One of the strategies to increase imaging contrast at high magnetic field is to inspect other paramagnetic ions than the commonly used Gd(III)-based CAs. For lanthanides, the magnetic moment can be higher than that of the isotropic Gd(III) ion. In addition, the symmetry of electronic ground state influences the PRE properties of a compound apart from diverse correlation times. In this work, PRE of water 1H has been investigated over a wide range of magnetic fields for aqueous solutions of the lanthanide containing polyoxometalates [DyIII(H2O)4GeW11O39]5- (Dy-W11), [ErIII(H2O)3GeW11O39]5- (Er-W11) and [{ErIII(H2O)(CH3COO)(P2W17O61)}2]16- (Er2-W34) over a wide range of frequencies from 20 MHz to 1.4 GHz. Their relaxivities r1 and r2 increase with increasing applied fields. These results indicate that the three chosen POM systems are potential candidates for contrast agents, especially at high magnetic fields.

11.
ACS Nano ; 15(10): 15781-15793, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34605625

RESUMO

Noble metal nanoclusters protected with carboranes, a 12-vertex, nearly icosahedral boron-carbon framework system, have received immense attention due to their different physicochemical properties. We have synthesized ortho-carborane-1,2-dithiol (CBDT) and triphenylphosphine (TPP) coprotected [Ag42(CBDT)15(TPP)4]2- (shortly Ag42) using a ligand-exchange induced structural transformation reaction starting from [Ag18H16(TPP)10]2+ (shortly Ag18). The formation of Ag42 was confirmed using UV-vis absorption spectroscopy, mass spectrometry, transmission electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and multinuclear magnetic resonance spectroscopy. Multiple UV-vis optical absorption features, which exhibit characteristic patterns, confirmed its molecular nature. Ag42 is the highest nuclearity silver nanocluster protected with carboranes reported so far. Although these clusters are thermally stable up to 200 °C in their solid state, light-irradiation of its solutions in dichloromethane results in its structural conversion to [Ag14(CBDT)6(TPP)6] (shortly Ag14). Single crystal X-ray diffraction of Ag14 exhibits Ag8-Ag6 core-shell structure of this nanocluster. Other spectroscopic and microscopic studies also confirm the formation of Ag14. Time-dependent mass spectrometry revealed that this light-activated intercluster conversion went through two sets of intermediate clusters. The first set of intermediates, [Ag37(CBDT)12(TPP)4]3- and [Ag35(CBDT)8(TPP)4]2- were formed after 8 h of light irradiation, and the second set comprised of [Ag30(CBDT)8(TPP)4]2-, [Ag26(CBDT)11(TPP)4]2-, and [Ag26(CBDT)7(TPP)7]2- were formed after 16 h of irradiation. After 24 h, the conversion to Ag14 was complete. Density functional theory calculations reveal that the kernel-centered excited state molecular orbitals of Ag42 are responsible for light-activated transformation. Interestingly, Ag42 showed near-infrared emission at 980 nm (1.26 eV) with a lifetime of >1.5 µs, indicating phosphorescence, while Ag14 shows red luminescence at 626 nm (1.98 eV) with a lifetime of 550 ps, indicating fluorescence. Femtosecond and nanosecond transient absorption showed the transitions between their electronic energy levels and associated carrier dynamics. Formation of the stable excited states of Ag42 is shown to be responsible for the core transformation.

12.
J Am Chem Soc ; 143(18): 6969-6980, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33913724

RESUMO

The kinetics of intercluster metal atom exchange reactions between solvated [Ag25(DMBT)18]- and [Au25(PET)18]- (DMBT and PET are 2,4-dimethylbenzenethiol and 2-phenylethanethiol, respectively, both C8H10S) were probed by electrospray ionization mass spectrometry and computer-based modeling. Anion mass spectra and collision induced dissociation (CID) measurements show that both cluster monomers and dimers are involved in the reactions. We have modeled the corresponding kinetics assuming a reaction mechanism in which metal atom exchange occurs through transient dimers. Our kinetic model contains three types of generic reactions: dimerization of monomers, metal atom exchange in the transient dimers, and dissociation of the dimers to monomers. There are correspondingly 377 discrete species connected by in total 1302 reactions (i.e., dimerization, dissociation and atom exchange reactions) leading to the entire series of monomeric and dimeric products [AgmAu25-m]- (m = 1-24) and [AgmAu50-m]2- (m = 0-50), respectively. The rate constants of the corresponding reactions were fitted to the experimental data, and good agreement was obtained with exchange rate constants which scale with the probability of finding a silver or gold atom in the respective monomeric subunit of the dimer, i.e., reflecting an entropic driving force for alloying. Allowing the dimerization rate constant to scale with increasing gold composition of the respective reactants improves the agreement further. The rate constants obtained are physically plausible, thus strongly supporting dimer-mediated metal atom exchange in this intercluster reaction system.

13.
Nanoscale ; 12(43): 22116-22128, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33118573

RESUMO

Reactions between atomically precise noble metal nanoclusters (NCs) have been studied widely in the recent past, but such processes between NCs and plasmonic nanoparticles (NPs) have not been explored earlier. For the first time, we demonstrate spontaneous reactions between an atomically precise NC, Au25(PET)18 (PET = 2-phenylethanethiol), and polydispersed silver NPs with an average diameter of 4 nm and protected with PET, resulting in alloy NPs under ambient conditions. These reactions were specific to the nature of the protecting ligands as no reaction was observed between the Au25(SBB)18 NC (SBB = 4-(tert-butyl)benzyl mercaptan) and the very same silver NPs. The mechanism involves an interparticle exchange of the metal and ligand species where the metal-ligand interface plays a vital role in controlling the reaction. The reaction proceeds through transient Au25-xAgx(PET)n alloy cluster intermediates as observed in time-dependent electrospray ionization mass spectrometry (ESI MS). High-resolution transmission electron microscopy (HRTEM) analysis of the resulting dispersion showed the transformation of polydispersed silver NPs into highly monodisperse gold-silver alloy NPs which assembled to form 2-dimensional superlattices. Using NPs of other average sizes (3 and 8 nm), we demonstrated that size plays an important role in the reactivity as observed in ESI MS and HRTEM.

14.
Chem Commun (Camb) ; 56(83): 12550-12553, 2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-32940294

RESUMO

In this communication, we present the synthesis of 2-pyrene imine thiol (2-PIT)-protected Ag35 nanoclusters using a ligand exchange-induced structural transformation reaction. The formation of the nanocluster and its composition were confirmed through several spectroscopic and electron microscopic studies. The UV-vis absorption spectrum showed a set of characteristic features of the nanocluster. This nanocluster showed blue emission under UV light due to pyrene to metal core charge-transfer, and NIR emission due to charge-transfer within the metal core. This is the first report on dual emitting pyrene protected atomically precise silver nanoclusters.

15.
ACS Nano ; 13(5): 5753-5759, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31017759

RESUMO

We introduce a cluster coprotected by thiol and diphosphine ligands, [Ag22(dppe)4(2,5-DMBT)12Cl4]2+ (dppe = 1,2-bis(diphenylphosphino)ethane; 2,5-DMBT= 2,5-dimethylbenzenethiol), which has an Ag10 core encapsulated by an Ag12(dppe)4(2,5-DMBT)12Cl4 shell. The Ag10 core comprises two Ag5 distorted trigonal bipyramidal units and is uncommon in Au and Ag nanoclusters. The electrospray ionization mass spectrum reveals that the cluster is divalent and contains four free electrons. An uncommon crystallization-induced enhancement of emission is observed in the cluster. The emission is weak in the solution and amorphous states. However, it is enhanced 12 times in the crystalline state compared to the amorphous state. A detailed investigation of the crystal structure suggests that well-arranged C-H···π and π···π interactions between the ligands are the major factors for this enhanced emission. Further, in-depth structural elucidation and density functional theory calculations suggest that the cluster is a superatom with four magic electrons.

16.
Sci Adv ; 5(1): eaau7555, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30613775

RESUMO

Rapid solution-state exchange dynamics in nanoscale pieces of matter is revealed, taking isotopically pure atomically precise clusters as examples. As two isotopically pure silver clusters made of 107Ag and 109Ag are mixed, an isotopically mixed cluster of the same entity results, similar to the formation of HDO, from H2O and D2O. This spontaneous process is driven by the entropy of mixing and involves events at multiple time scales.

17.
Acc Chem Res ; 52(1): 2-11, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30507167

RESUMO

Supramolecular chemistry is a major area of chemistry that utilizes weaker non-covalent interactions between molecules, including hydrogen bonding, van der Waals, electrostatic, π···π, and C-H···π interactions. Such forces have been the basis of several molecular self-assemblies and host-guest complexes in organic, inorganic, and biological systems. Atomically precise nanoclusters (NCs) are materials of growing interest that display interesting structure-property correlations. The evolving science of such systems reaffirms their molecular behavior. This gives a possibility of exploring their supramolecular chemistry, leading to assemblies with similar or dissimilar cluster molecules. Such assemblies with compositional, structural, and conformational precision may ultimately result in cluster-assembled hybrid materials. In this Account, we present recent advancements on different possibilities of supramolecular interactions in atomically precise cluster systems that can occur at different length scales. We first present a brief discussion of the aspicule model of clusters, considering Au25(SR)18 as an example, that can explain various aspects of its atomic precision and distinguish the similar or dissimilar interacting sites in their structures. The supramolecular interaction of 4- tert-butylbenzyl mercaptan (BBSH)-protected [Au25(SBB)18]- NCs with cyclodextrins (CD) to form Au25SBB18∩CD n ( n = 1-4) and that of [Ag29(BDT)12]3- with fullerenes to form [Ag29(BDT)12(C60) n]3- ( n = 1-9) (BDT = 1,3-benzenedithiolate) are discussed subsequently. The formation of these adducts was studied by electrospray ionization mass spectrometry (ESI MS), optical absorption and NMR spectroscopy. In the subsequent sections, we discuss how variation in intercluster interactions can lead to polymorphic crystals, which are observable in single-crystal X-ray diffraction. Taking [Ag29(BDT)12(TPP)4]3- (TPP = triphenylphosphine) clusters as an example, we discuss how the different patterns of C-H···π and π···π interactions between the secondary ligands can alter the packing of the NCs into cubic and trigonal lattices. Finally, we discuss how the supramolecular interactions of atomically precise clusters can result in their hybrid assemblies with plasmonic nanostructures. The interaction of p-mercaptobenzoic acid ( p-MBA)-protected Ag44( p-MBA)30 NCs with tellurium nanowires (Te NWs) can form crossed-bilayer precision assemblies with a woven-fabric-like structure with an angle of 81° between the layers. Similar crossed-bilayer assemblies show an angle of 77° when Au102( p-MBA)44 clusters are used to form the structure. Such assemblies were studied by transmission electron microscopy (TEM). Precision in these hybrid assemblies of Te NWs was highly controlled by the geometry of the ligands on the NC surface. Moreover, we also present how Ag44( p-MBA)30 clusters can encapsulate gold nanorods to form cage-like nanostructures. Such studies involved TEM, scanning transmission electron microscopy (STEM), and three-dimensional tomographic reconstructions of the nanostructures. The hydrogen bonding interactions of the -COOH groups of the p-MBA ligands were the major driving force in both of these cases. An important aspect that is central to the advancement of the area is the close interplay of molecular tools such as MS with structural tools such as TEM along with detailed computational modeling. We finally conclude this Account with a future perspective on the supramolecular chemistry of clusters. Advancements in this field will help in developing new materials with potential optical, electrical, and mechanical properties.

18.
J Am Chem Soc ; 140(42): 13590-13593, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30303380

RESUMO

We present isomerism in a few supramolecular adducts of atomically precise nanoparticles, [Ag29(BDT)12∩(CD) n]3- ( n = 1-6), abbreviated as I where BDT and CD are 1,3-benzenedithiol and cyclodextrins (α, ß and γ), respectively; ∩ symbolizes an inclusion complex. The different host-guest complexes of I were characterized in the solution state as well as in the gas phase. The CDs (α, ß and γ) encapsulate a pair of BDT ligands protecting the Ag29 core. This unique geometry of the supramolecular adducts makes the system similar to octahedral complexes of transition metals, which manifest various isomers. These isomers of I ( n = 2-4) were separated by ion mobility mass spectrometry (IM MS). We proposed structures of all the inclusion complexes with the help of IM MS measurements and molecular docking, density functional theory (DFT), and collision cross section (CCS) calculations.

19.
Nanoscale ; 10(42): 20033-20042, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30351319

RESUMO

In this paper, we demonstrate that systematic replacement of the secondary ligand PPh3 leads to an enhancement in the near-infrared (NIR) photoluminescence (PL) of [Ag29(BDT)12(PPh3)4]3-. While the replacement of PPh3 with other monophosphines enhances luminescence slightly, the replacement with diphosphines of increasing chain length leads to a drastic PL enhancement, as high as 30 times compared to the parent cluster, [Ag29(BDT)12(PPh3)4]3-. Computational modeling suggests that the emission is a ligand to metal charge transfer (LMCT) which is affected by the nature of the secondary ligand. Control experiments with systematic replacement of the secondary ligand confirm its influence on the emission. The excited state dynamics shows this emission to be phosphorescent in nature which arises from the triplet excited state. This enhanced luminescence has been used to develop a prototypical O2 sensor. Moreover, a similar enhancement was also found for [Ag51(BDT)19(PPh3)3]3-. The work presents an easy approach to the PL enhancement of Ag clusters for various applications.

20.
Anal Chem ; 90(19): 11351-11357, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30170489

RESUMO

A detailed mass-spectrometric study of atomically precise monolayer-protected clusters revealed the potential application of such materials as mass-spectrometric standards, mostly in negative-ion mode and in the high-mass range. To date, very few molecules are known that can be efficiently ionized and detected at lower concentrations as negative ions with high signal intensities beyond m/ z 3000. Noble-metal clusters are molecules with definite masses, sizes, and shapes, which makes them excellent candidates to choose as standards over conventional low-molecular-weight polymers or clusters of ionic salts. They may be used as calibrants in all possible modes, including tandem mass spectrometry and ion mobility. With the advancement in materials science, more and more molecules are being added to the list that are inherently negatively charged in solution and can be examined by mass spectrometry. In this report, we demonstrate the use of three such model cluster systems for their potential to calibrate mass spectrometers in negative-ion mode. This idea can be extended to many other clusters known so far to achieve calibration in extended mass ranges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA