Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(2): 751-756, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34982936

RESUMO

Heterogeneous processes can control atmospheric composition. Snow and ice present important, but poorly understood, reaction media that can greatly alter the composition of air in the cryosphere in polar and temperate regions. Atmospheric scientists struggle to reconcile model predictions with field observations in snow-covered regions due in part to experimental challenges associated with monitoring reactions at air-ice interfaces, and debate regarding reaction kinetics and mechanisms has persisted for over a decade. In this work, we use wavelength-resolved fluorescence microscopy to determine the distribution and chemical speciation of the pollutant anthracene at environmentally relevant frozen surfaces. Our results indicate that anthracene adsorbs to frozen surfaces in monomeric form, but that following lateral diffusion, molecules ultimately reside within brine channels at saltwater ice surfaces, and in micron-sized clusters at freshwater ice surfaces; emission profiles indicate extensive self-association. We also measure anthracene photodegradation kinetics in aqueous solution and artificial snow prepared from frozen freshwater and saltwater solutions. Our results suggest that anthracene─and likely other aromatic pollutants─undergo bimolecular photodegradation at the surface of freshwater ice and sea ice, but not at the surface of frozen organic matter. These results will improve predictions of pollutant fate and exposure risk in the cryosphere. The techniques used can be applied to numerous surfaces within and beyond the atmospheric sciences.

2.
Environ Sci Process Impacts ; 21(7): 1076-1084, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31241094

RESUMO

Dissolved organic matter (DOM) is a common solute in snow and ice at Earth's surface. Its effects on reaction kinetics in ice and at air-ice interfaces can be large, but are currently difficult to quantify. We used Raman microscopy to characterize the surface and bulk of frozen aqueous solutions containing humic acid, sodium dodecyl sulfate (SDS), and citric acid at a range of concentrations and temperatures. The surface-active species (humic acid and SDS) were distributed differently than citric acid. Humic acid and SDS are almost completely excluded to the air-ice interface during freezing, where they form a film that coats the surface nearly completely. A liquid layer that coats the majority of the surface was observed at all humic acid and SDS concentrations. Citric acid, which is smaller and less surface active, is excluded to liquid channels at the air-ice interface and within the ice bulk, as has previously been reported for ionic solutes such as sodium chloride. Incomplete surface wetting was observed at all citric acid concentrations and at all temperatures (up to -5 °C). Citric acid appears to be solvated in frozen samples, but SDS and humic acid do not. These results will improve our understanding of the effects of organic solutes on environmental and atmospheric chemistry within ice and at air-ice interfaces.


Assuntos
Ar/análise , Substâncias Húmicas/análise , Camada de Gelo/química , Ácido Cítrico/análise , Temperatura Baixa , Congelamento , Cinética , Modelos Teóricos , Dodecilsulfato de Sódio/análise , Solubilidade , Soluções , Análise Espectral Raman , Tensoativos/análise
3.
Rev Sci Instrum ; 86(11): 115109, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26628174

RESUMO

We report on the development of a nano-Newton thrust-stand that can measure up to 100 µN thrust from different types of microthrusters with 10 nN resolution. The compact thrust-stand measures the impingement force of the particles emitted from a microthruster onto a suspended plate of size 45 mm × 45 mm and with a natural frequency over 50 Hz. Using a homodyne (lock-in) readout provides strong immunity to facility vibrations, which historically has been a major challenge for nano-Newton thrust-stands. A cold-gas thruster generating up to 50 µN thrust in air was first used to validate the thrust-stand. Better than 10 nN resolution and a minimum detectable thrust of 10 nN were achieved. Thrust from a miniature electrospray propulsion system generating up to 3 µN of thrust was measured with our thrust-stand in vacuum, and the thrust was compared with that computed from beam diagnostics, obtaining agreement within 50 nN to 150 nN. The 10 nN resolution obtained from this thrust-stand matches that from state-of-the-art nano-Newton thrust-stands, which measure thrust directly from the thruster by mounting it on a moving arm (but whose natural frequency is well below 1 Hz). The thrust-stand is the first of its kind to demonstrate less than 3 µN resolution by measuring the impingement force, making it capable of measuring thrust from different types of microthrusters, with the potential of easy upscaling for thrust measurement at much higher levels, simply by replacing the force sensor with other force sensors.

4.
J Am Soc Mass Spectrom ; 25(8): 1364-73, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24833357

RESUMO

We report on the development of a time-of-flight (ToF) mass spectrometer with a highly efficient electrostatic ion guide for enhancing detectability in ToF mass spectrometry. This 65-cm long ion guide consists of 13 cascaded stages of Einzel lens to collect a large fraction of emitted charges over a wide emission angle and energy spread for time-of-flight measurements. Simulations show that the ion guide can collect 100% of the charges with up to 23° emission half-angle or 30% energy spread irrespective of their specific charge. We demonstrate this ion guide as applied to electrospray ion sources. Experiments performed with tungsten needle electrospraying the ionic liquid EMI-BF4 showed that up to 80% of the emitted charges could be collected at the end of the flight tube. Flight times of monomers and dimers emitted from the needles were measured in both positive and negative emission polarities. The setup was also used to characterize the electrospray from microfabricated silicon capillary emitters and nearly 30% charges could be collected even from a 40(°) emission half-angle. This setup can thus increase the fraction of charge collection for ToF measurement and spray characteristics can be obtained from a very large fraction of the emission in real time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA