Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37241880

RESUMO

In the present study, we aimed to synthesize (Ag)1-x(GNPs)x nanocomposites in variable ratios (25% GNPs-Ag, 50% GNPs-Ag, and 75% GNPs-Ag) via an ex situ approach to investigate the incremental effects of GNPs (graphene nanoparticles) on AgNPs (silver nanoparticles). The prepared nanocomposites were successfully characterized using different microscopic and spectroscopic techniques, including X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet spectroscopy, and Raman spectroscopic analysis. For the evaluation of morphological aspects, shape, and percentage elemental composition, SEM and EDX analyses were employed. The bioactivities of the synthesized nanocomposites were briefly investigated. The antifungal activity of (Ag)1-x(GNPs)x nanocomposites was reported to be 25% for AgNPs and 66.25% using 50% GNPs-Ag against Alternaria alternata. The synthesized nanocomposites were further evaluated for cytotoxic potential against U87 cancer cell lines with improved results (for pure AgNPs IC50: ~150 µg/mL, for 50% GNPs-Ag IC50: ~12.5 µg/mL). The photocatalytic properties of the nanocomposites were determined against the toxic dye Congo red, and the percentage degradation was recorded as 38.35% for AgNPs and 98.7% for 50% GNPs-Ag. Hence, from the results, it is concluded that silver nanoparticles with carbon derivatives (graphene) have strong anticancer and antifungal properties. Dye degradation strongly confirmed the photocatalytic potential of Ag-graphene nanocomposites in the removal of toxicity present in organic water pollutants.


Assuntos
Antineoplásicos , Grafite , Nanopartículas Metálicas , Nanocompostos , Grafite/farmacologia , Grafite/química , Antifúngicos/farmacologia , Nanopartículas Metálicas/química , Prata/farmacologia , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antineoplásicos/farmacologia , Nanocompostos/química , Antibacterianos , Difração de Raios X
2.
Microorganisms ; 11(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37110492

RESUMO

Green nanotechnology has made the synthesis of nanoparticles a possible approach. Nanotechnology has a significant impact on several scientific domains and has diverse applications in different commercial areas. The current study aimed to develop a novel and green approach for the biosynthesis of silver oxide nanoparticles (Ag2ONPs) utilizing Parieteria alsinaefolia leaves extract as a reducing, stabilizing and capping agent. The change in color of the reaction mixture from light brown to reddish black determines the synthesis of Ag2ONPs. Further, different techniques were used to confirm the synthesis of Ag2ONPs, including UV-Visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDX), zeta potential and dynamic light scattering (DLS) analyses. The Scherrer equation determined a mean crystallite size of ~22.23 nm for Ag2ONPs. Additionally, different in vitro biological activities have been investigated and determined significant therapeutic potentials. Radical scavenging DPPH assay (79.4%), reducing power assay (62.68 ± 1.77%) and total antioxidant capacity (87.5 ± 4.8%) were evaluated to assess the antioxidative potential of Ag2ONPs. The disc diffusion method was adopted to evaluate the antibacterial and antifungal potentials of Ag2ONPs using different concentrations (125-1000 µg/mL). Moreover, the brine shrimp cytotoxicity assay was investigated and the LC50 value was calculated as 2.21 µg/mL. The biocompatibility assay using red blood cells (<200 µg/mL) confirmed the biosafe and biocompatible nature of Ag2ONPs. Alpha-amylase inhibition assay was performed and reported 66% inhibition. In conclusion, currently synthesized Ag2ONPs have exhibited strong biological potential and proved as an attractive eco-friendly candidate. In the future, this preliminary research work will be a helpful source and will open new avenues in diverse fields, including the pharmaceutical, biomedical and pharmacological sectors.

3.
Molecules ; 28(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903337

RESUMO

Iron oxide nanoparticles (Fe2O3-NPs) were synthesized using Oscillatoria limnetica extract as strong reducing and capping agents. The synthesized iron oxide nanoparticles IONPs were characterized by UV-visible spectroscopy, Fourier transform infrared (FTIR), X-ray diffractive analysis (XRD), scanning electron microscope (SEM), and Energy dispersive X-ray spectroscopy (EDX). IONPs synthesis was confirmed by UV-visible spectroscopy by observing the peak at 471 nm. Furthermore, different in vitro biological assays, which showed important therapeutic potentials, were performed. Antimicrobial assay of biosynthesized IONPs was performed against four different Gram-positive and Gram-negative bacterial strains. E. coli was found to be the least suspected strain (MIC: 35 µg/mL), and B. subtilis was found to be the most suspected strain (MIC: 14 µg/mL). The maximum antifungal assay was observed for Aspergillus versicolor (MIC: 27 µg mL). The cytotoxic assay of IONPs was also studied using a brine shrimp cytotoxicity assay, and LD50 value was reported as 47 µg/mL. In toxicological evaluation, IONPs was found to be biologically compatible to human RBCs (IC50: >200 µg/mL). The antioxidant assay, DPPH 2,2-diphenyl-1-picrylhydrazyly was recorded at 73% for IONPs. In conclusion, IONPs revealed great biological potential and can be further recommended for in vitro and in vivo therapeutic purposes.


Assuntos
Escherichia coli , Nanopartículas Metálicas , Humanos , Nanopartículas Metálicas/química , Antifúngicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/química , Extratos Vegetais/química , Difração de Raios X , Testes de Sensibilidade Microbiana
4.
Molecules ; 28(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36677716

RESUMO

Elaeagnus angustifolia (EA) mediated green chemistry route was used for the biofabrication of NiONPs without the provision of additional surfactants and capping agents. The formation of NiONPs was confirmed using advanced different characterization techniques such as Scanning electron microscopy, UV, Fourier transmission-infrared, RAMAN, and energy dispersal spectroscopic and dynamic light scattering techniques. Further, different biological activities of EA-NiONPs were studied. Antibacterial activities were performed using five different bacterial strains using disc-diffusion assays and have shown significant results as compared to standard Oxytetracycline discs. Further, NiONPs exhibited excellent antifungal performance against different pathogenic fungal strains. The biocompatibility test was performed using human RBCs, which further confirmed that NiONPs are more biocompatible at the concentration of 7.51-31.25 µg/mL. The antioxidant activities of NiONPs were investigated using DPPH free radical scavenging assay. The NiONPs were demonstrated to have much better antioxidant potentials in terms of % DPPH scavenging (93.5%) and total antioxidant capacity (81%). Anticancer activity was also performed using HUH7 and HEP-G2 cancer cell lines and has shown significant potential with IC50 values of 18.45 µg/mL and 14.84 µg/mL, respectively. Further, the NiONPs were evaluated against Lesihmania tropica parasites and have shown strong antileishmanial potentials. The EA-NiONPs also showed excellent enzyme inhibition activities; protein kinase (19.4 mm) and alpha-amylase (51%). In conclusion, NiONPs have shown significant results against different biological assays. In the future, we suggest various in vivo activities for EA-NiONPs using different animal models to further unveil the biological and biomedical potentials.


Assuntos
Antioxidantes , Nanopartículas Metálicas , Animais , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Molecules ; 27(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36014424

RESUMO

Microbial pathogens and bulk amounts of industrial toxic wastes in water are an alarming situation to humans and a continuous threat to aquatic life. In this study, multifunctional silver and graphene nanocomposites (Ag)1-x(GNPs)x [25% (x = 0.25), 50% (x = 0.50) and 75% (x = 0.75) of GNPs] were synthesized via ex situ approach. Further, the synthesized nanocomposites were explored for their physicochemical characteristics, such as vibrational modes (Raman spectroscopic analysis), optical properties (UV visible spectroscopic analysis), antibacterial and photocatalytic applications. We investigated the antimicrobial activity of silver and graphene nanocomposites (Ag-GNPs), and the results showed that Ag-GNPs nanocomposites exhibit remarkably improved antimicrobial activity (28.78% (E. coli), 31.34% (S. aureus) and 30.31% (P. aeruginosa) growth inhibition, which might be due to increase in surface area of silver nanoparticles (AgNPs)). Furthermore, we investigated the photocatalytic activity of silver (AgNPs) and graphene (GNPs) nanocomposites in varying ratios. Interestingly, the Ag-GNPs nanocomposites show improved photocatalytic activity (78.55% degradation) as compared to AgNPs (54.35%), which can be an effective candidate for removing the toxicity of dyes. Hence, it is emphatically concluded that Ag-GNPs hold very active behavior towards the decolorization of dyes and could be a potential candidate for the treatment of wastewater and possible pathogenic control over microbes. In the future, we also recommend different other in vitro biological and environmental applications of silver and graphene nanocomposites.


Assuntos
Anti-Infecciosos , Grafite , Nanopartículas Metálicas , Nanocompostos , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Corantes/química , Escherichia coli , Grafite/química , Humanos , Nanopartículas Metálicas/química , Nanocompostos/química , Pseudomonas aeruginosa , Prata/química , Prata/farmacologia , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA