RESUMO
OBJECTIVES: To determine the proportion of individuals with detectable antigen in plasma or serum after SARS-CoV-2 infection and the association of antigen detection with postacute sequelae of COVID-19 (PASC) symptoms. METHODS: Plasma and serum samples were collected from adults participating in four independent studies at different time points, ranging from several days up to 14 months post-SARS-CoV-2 infection. The primary outcome measure was to quantify SARS-CoV-2 antigens, including the S1 subunit of spike, full-length spike, and nucleocapsid, in participant samples. The presence of 34 commonly reported PASC symptoms during the postacute period was determined from participant surveys or chart reviews of electronic health records. RESULTS: Of the 1569 samples analysed from 706 individuals infected with SARS-CoV-2, 21% (95% CI, 18-24%) were positive for either S1, spike, or nucleocapsid. Spike was predominantly detected, and the highest proportion of samples was spike positive (20%; 95% CI, 18-22%) between 4 and 7 months postinfection. In total, 578 participants (82%) reported at least one of the 34 PASC symptoms included in our analysis ≥1 month postinfection. Cardiopulmonary, musculoskeletal, and neurologic symptoms had the highest reported prevalence in over half of all participants, and among those participants, 43% (95% CI, 40-45%) on average were antigen-positive. Among the participants who reported no ongoing symptoms (128, 18%), antigen was detected in 28 participants (21%). The presence of antigen was associated with the presence of one or more PASC symptoms, adjusting for sex, age, time postinfection, and cohort (OR, 1.8; 95% CI, 1.4-2.2). DISCUSSION: The findings of this multicohort study indicate that SARS-CoV-2 antigens can be detected in the blood of a substantial proportion of individuals up to 14 months after infection. While approximately one in five asymptomatic individuals was antigen-positive, roughly half of all individuals reporting ongoing cardiopulmonary, musculoskeletal, and neurologic symptoms were antigen-positive.
RESUMO
BACKGROUND: Understanding antibody responses to SARS-CoV-2 vaccination is crucial for refining COVID-19 immunization strategies. Generation of mucosal immune responses, including mucosal IgA, could be of potential benefit to vaccine efficacy, yet limited evidence exists regarding the production of mucosal antibodies following the administration of current mRNA vaccines to young children. METHODS: We measured the levels of antibodies against SARS-CoV-2 from a cohort of children under 5 years of age (N=24) undergoing SARS-CoV-2 mRNA vaccination (serially collected, matched serum and saliva samples) or in a convenience sample of children under 5 years of age presenting to pediatric emergency department (nasal swabs, N=103). Further, we assessed salivary and nasal samples for the ability to induce SARS-CoV-2 spike-mediated neutrophil extracellular traps (NET) formation. RESULTS: Longitudinal analysis of post-vaccine responses in saliva revealed the induction of SARS-CoV-2 specific IgG but not IgA. Similarly, SARS-CoV-2 specific IgA was only observed in nasal samples obtained from previously infected children with or without vaccination, but not in vaccinated children without a history of infection. In addition, oronasopharyngeal samples obtained from children with prior infection were able to trigger enhanced spike-mediated NET formation, and IgA played a key role in driving this process. CONCLUSIONS: Despite the induction of specific IgG in the oronasal mucosa, current intramuscular vaccines have limited ability to generate mucosal IgA in young children. These results confirm the independence of mucosal IgA responses from systemic humoral responses following mRNA vaccination and suggest potential future vaccination strategies for enhancing mucosal protection in this young age group.
RESUMO
Immune responses from prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and COVID-19 vaccination mitigate disease severity, but they do not fully prevent subsequent infections, especially from genetically divergent strains. We examined the incidence of and immune differences against human endemic coronaviruses (eCoVs) as a proxy for response against future genetically heterologous coronaviruses (CoVs). We assessed differences in symptomatic eCoV and non-CoV respiratory disease incidence among those with known prior SARS-CoV-2 infection or previous COVID-19 vaccination but no documented SARS-CoV-2 infection or neither exposure. Retrospective cohort analyses suggest that prior SARS-CoV-2 infection, but not previous COVID-19 vaccination alone, associates with a lower incidence of subsequent symptomatic eCoV infection. There was no difference in non-CoV incidence, implying that the observed difference was eCoV specific. In a second cohort where both cellular and humoral immunity were measured, those with prior SARS-CoV-2 spike protein exposure had lower eCoV-directed neutralizing antibodies, suggesting that neutralization is not responsible for the observed decreased eCoV disease. The three groups had similar cellular responses against the eCoV spike protein and nucleocapsid antigens. However, CD8+ T cell responses to the nonstructural eCoV proteins nsp12 and nsp13 were higher in individuals with previous SARS-CoV-2 infection as compared with the other groups. This association between prior SARS-CoV-2 infection and decreased incidence of eCoV disease may therefore be due to a boost in CD8+ T cell responses against eCoV nsp12 and nsp13, suggesting that incorporation of nonstructural viral antigens in a future pan-CoV vaccine may improve vaccine efficacy.
Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/epidemiologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Incidência , SARS-CoV-2/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Vacinação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Adulto , Glicoproteína da Espícula de Coronavírus/imunologia , Imunidade Humoral/imunologia , Idoso , Anticorpos Neutralizantes/imunologiaRESUMO
Background: Understanding antibody responses to SARS-CoV-2 vaccination is crucial for refining COVID-19 immunization strategies. Generation of mucosal immune responses, including mucosal IgA, could be of potential benefit to vaccine efficacy, yet limited evidence exists regarding the production of mucosal antibodies following the administration of current mRNA vaccines to young children. Methods: We measured the levels of antibodies against SARS-CoV-2 from a cohort of children under 5 years of age undergoing SARS-CoV-2 mRNA vaccination (serially collected, matched serum and saliva samples, N=116) or on convenience samples of children under 5 years of age presenting to a pediatric emergency department (nasal swabs, N=103). Further, we assessed salivary and nasal samples for the ability to induce SARS-CoV-2 spike-mediated neutrophil extracellular traps (NET) formation. Results: Longitudinal analysis of post-vaccine responses in saliva revealed the induction of SARS-CoV-2 specific IgG but not IgA. Similarly, SARS-CoV-2 specific IgA was only observed in nasal samples obtained from previously infected children with or without vaccination, but not in vaccinated children without a history of infection. In addition, oronasopharyngeal samples obtained from children with prior infection were able to trigger enhanced spike-mediated NET formation, and IgA played a key role in driving this process. Conclusions: Despite the induction of specific IgG in the oronasal mucosa, current intramuscular vaccines have limited ability to generate mucosal IgA in young children. These results confirm the independence of mucosal IgA responses from systemic humoral responses following mRNA vaccination and suggest potential future vaccination strategies for enhancing mucosal protection in this young age group.
RESUMO
Immune responses from prior SARS-CoV-2 infection and COVID-19 vaccination do not prevent re-infections and may not protect against future novel coronaviruses (CoVs). We examined the incidence of and immune differences against human endemic CoVs (eCoV) as a proxy for response against future emerging CoVs. Assessment was among those with known SARS-CoV-2 infection, COVID-19 vaccination but no documented SARS-CoV-2 infection, or neither exposure. Retrospective cohort analyses suggest that prior SARS-CoV-2 infection, but not COVID-19 vaccination alone, protects against subsequent symptomatic eCoV infection. CD8+ T cell responses to the non-structural eCoV proteins, nsp12 and nsp13, were significantly higher in individuals with previous SARS-CoV-2 infection as compared to the other groups. The three groups had similar cellular responses against the eCoV spike and nucleocapsid, and those with prior spike exposure had lower eCoV-directed neutralizing antibodies. Incorporation of non-structural viral antigens in a future pan-CoV vaccine may improve protection against future heterologous CoV infections.
RESUMO
During the first few months of the global Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic, the medical research community had to expeditiously develop, select, and deploy novel diagnostic methods and tools to address the numerous testing challenges presented by the novel virus. Integrating a systematic approach to diagnostic selection with a rapid validation protocol in a clinical setting can shorten the timeline to bring new technologies to practice. In response to the urgent need to provide tools for identifying SARS-CoV-2-positive individuals, we developed a framework for assessing technologies against a set of prioritized performance metrics to guide device selection. We also developed and proposed clinical validation frameworks for the rapid screening of new technologies. The rubric described here represents a versatile approach that can be extended to future technology assessments and can be implemented in preparation for future emerging pathogens.