Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nature ; 630(8016): 475-483, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839958

RESUMO

Senescence is a cellular state linked to ageing and age-onset disease across many mammalian species1,2. Acutely, senescent cells promote wound healing3,4 and prevent tumour formation5; but they are also pro-inflammatory, thus chronically exacerbate tissue decline. Whereas senescent cells are active targets for anti-ageing therapy6-11, why these cells form in vivo, how they affect tissue ageing and the effect of their elimination remain unclear12,13. Here we identify naturally occurring senescent glia in ageing Drosophila brains and decipher their origin and influence. Using Activator protein 1 (AP1) activity to screen for senescence14,15, we determine that senescent glia can appear in response to neuronal mitochondrial dysfunction. In turn, senescent glia promote lipid accumulation in non-senescent glia; similar effects are seen in senescent human fibroblasts in culture. Targeting AP1 activity in senescent glia mitigates senescence biomarkers, extends fly lifespan and health span, and prevents lipid accumulation. However, these benefits come at the cost of increased oxidative damage in the brain, and neuronal mitochondrial function remains poor. Altogether, our results map the trajectory of naturally occurring senescent glia in vivo and indicate that these cells link key ageing phenomena: mitochondrial dysfunction and lipid accumulation.


Assuntos
Envelhecimento , Encéfalo , Senescência Celular , Drosophila melanogaster , Metabolismo dos Lipídeos , Mitocôndrias , Neuroglia , Animais , Feminino , Humanos , Masculino , Envelhecimento/metabolismo , Envelhecimento/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/citologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/citologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Longevidade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo , Fator de Transcrição AP-1/metabolismo , Lipídeos , Inflamação/metabolismo , Inflamação/patologia
3.
Nature ; 546(7656): 158-161, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28538737

RESUMO

Effective adaptive immune responses require a large repertoire of naive T cells that migrate throughout the body, rapidly identifying almost any foreign peptide. Because the production of T cells declines with age, naive T cells must be long-lived. However, it remains unclear how naive T cells survive for years while constantly travelling. The chemoattractant sphingosine 1-phosphate (S1P) guides T cell circulation among secondary lymphoid organs, including spleen, lymph nodes and Peyer's patches, where T cells search for antigens. The concentration of S1P is higher in circulatory fluids than in lymphoid organs, and the S1P1 receptor (S1P1R) directs the exit of T cells from the spleen into blood, and from lymph nodes and Peyer's patches into lymph. Here we show that S1P is essential not only for the circulation of naive T cells, but also for their survival. Using transgenic mouse models, we demonstrate that lymphatic endothelial cells support the survival of T cells by secreting S1P via the transporter SPNS2, that this S1P signals through S1P1R on T cells, and that the requirement for S1P1R is independent of the established role of the receptor in guiding exit from lymph nodes. S1P signalling maintains the mitochondrial content of naive T cells, providing cells with the energy to continue their constant migration. The S1P signalling pathway is being targeted therapeutically to inhibit autoreactive T cell trafficking, and these findings suggest that it may be possible simultaneously to target autoreactive or malignant cell survival.


Assuntos
Células Endoteliais/metabolismo , Tecido Linfoide/citologia , Lisofosfolipídeos/metabolismo , Mitocôndrias/metabolismo , Esfingosina/análogos & derivados , Linfócitos T/citologia , Animais , Proteínas de Transporte de Ânions/metabolismo , Movimento Celular , Sobrevivência Celular , Feminino , Linfonodos/citologia , Linfonodos/imunologia , Tecido Linfoide/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Nódulos Linfáticos Agregados/citologia , Nódulos Linfáticos Agregados/imunologia , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingosina/metabolismo , Baço/citologia , Baço/imunologia , Linfócitos T/imunologia
4.
Nat Immunol ; 18(1): 15-25, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27841869

RESUMO

The lymph node periphery is an important site for many immunological functions, from pathogen containment to the differentiation of helper T cells, yet the cues that position cells in this region are largely undefined. Here, through the use of a reporter for the signaling lipid S1P (sphingosine 1-phosphate), we found that cells sensed higher concentrations of S1P in the medullary cords than in the T cell zone and that the S1P transporter SPNS2 on lymphatic endothelial cells generated this gradient. Natural killer (NK) cells are located at the periphery of the lymph node, predominantly in the medulla, and we found that expression of SPNS2, expression of the S1P receptor S1PR5 on NK cells, and expression of the chemokine receptor CXCR4 were all required for NK cell localization during homeostasis and rapid production of interferon-γ by NK cells after challenge. Our findings elucidate the spatial cues for NK cell organization and reveal a previously unknown role for S1P in positioning cells within the medulla.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Células Endoteliais/imunologia , Células Matadoras Naturais/imunologia , Linfonodos/imunologia , Lisofosfolipídeos/metabolismo , Receptores CXCR4/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Animais , Proteínas de Transporte de Ânions/genética , Diferenciação Celular , Movimento Celular , Células Cultivadas , Quimiotaxia , Homeostase , Interferon gama/metabolismo , Ativação Linfocitária/genética , Lisofosfolipídeos/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CXCR4/genética , Receptores de Lisoesfingolipídeo/genética , Transdução de Sinais , Esfingosina/química , Esfingosina/metabolismo , Linfócitos T Auxiliares-Indutores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA