Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1032, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200093

RESUMO

To address the overuse of antimicrobials in poultry production, new functional feed ingredients, i.e. ingredients with benefits beyond meeting basic nutritional requirements, can play a crucial role thanks to their prophylactic effects. This study evaluated the effects of the supplementation of arginine, threonine and glutamine together with grape polyphenols on the gut integrity and functionality of broilers facing a stress condition. 108 straight-run newly hatched Ross PM3 chicks were kept until 35 days and were allocated to 3 treatments. Broilers in the control group were raised in standard conditions. In experimental groups, birds were administered with corticosterone in drinking water (CORT groups) to impair the global health of the animal and were fed a well-balanced diet supplemented or not with a mix of functional amino acids together with grape extracts (1 g/kg of diet-CORT + MIX group). Gut permeability was significantly increased by corticosterone in non-supplemented birds. This corticosterone-induced stress effect was alleviated in the CORT + MIX group. MIX supplementation attenuated the reduction of crypt depth induced by corticosterone. Mucin 2 and TNF-α gene expression was up-regulated in the CORT + MIX group compared to the CORT group. Caecal microbiota remained similar between the groups. These findings indicate that a balanced diet supplemented with functional AA and polyphenols can help to restore broiler intestinal barrier after a stress exposure.


Assuntos
Aminoácidos , Antifibrinolíticos , Animais , Galinhas , Corticosterona , Suplementos Nutricionais , Dieta/veterinária
2.
J Anim Sci Biotechnol ; 14(1): 40, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36879289

RESUMO

BACKGROUND: Branched-chain amino acids (BCAAs), including L-leucine (L-Leu), L-isoleucine (L-Ile), L-valine (L-Val), and L-arginine (L-Arg), play a crucial role in mammary gland development, secretion of milk and regulation of the catabolic state and immune response of lactating sows. Furthermore, it has recently been suggested that free amino acids (AAs) can also act as microbial modulators. This study aimed at evaluating whether the supplementation of lactating sows with BCAAs (9, 4.5 and 9 g/d/sow of L-Val, L-Ile and L-Leu, respectively) and/or L-Arg (22.5 g/d/sow), above the estimated nutritional requirement, could influence the physiological and immunological parameters, microbial profile, colostrum and milk composition and performance of sows and their offspring. RESULTS: At d 41, piglets born from the sows supplemented with the AAs were heavier (P = 0.03). The BCAAs increased glucose and prolactin (P < 0.05) in the sows' serum at d 27, tended to increase immunoglobulin A (IgA) and IgM in the colostrum (P = 0.06), increased the IgA (P = 0.004) in the milk at d 20 and tended to increase lymphocyte% in the sows' blood at d 27 (P = 0.07). Furthermore, the BCAAs tended to reduce the Chao1 and Shannon microbial indices (P < 0.10) in the sows' faeces. The BCAA group was discriminated by Prevotellaceae_UCG-004, Erysipelatoclostridiaceae UCG-004, the Rikenellaceae_RC9_gut_group and Treponema berlinense. Arginine reduced piglet mortality pre- (d 7, d 14) and post-weaning (d 41) (P < 0.05). Furthermore, Arg increased the IgM in the sow serum at d 10 (P = 0.05), glucose and prolactin (P < 0.05) in the sow serum at d 27 and the monocyte percentage in the piglet blood at d 27 (P = 0.025) and their jejunal expression of NFKB2 (P = 0.035) while it reduced the expression of GPX-2 (P = 0.024). The faecal microbiota of the sows in Arg group was discriminated by Bacteroidales. The combination of BCAAs and Arg tended to increase spermine at d 27 (P = 0.099), tended to increase the Igs (IgA and IgG, P < 0.10) at d 20 in the milk, favoured the faecal colonisation of Oscillospiraceae UCG-005 and improved piglet growth. CONCLUSION: Feeding Arg and BCAAs above the estimated requirements for milk production may be a strategy to improve sow productive performance in terms of piglet average daily gain (ADG), immune competence and survivability via modulation of the metabolism, colostrum and milk compositions and intestinal microbiota of the sows. The synergistic effect between these AAs, noticeable by the increase of Igs and spermine in the milk and in the improvement of the performance of the piglets, deserves additional investigation.

3.
BMC Vet Res ; 19(1): 25, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717823

RESUMO

BACKGROUND: Dietary supplementation with a blend of functional amino acids (AA) and grape extract polyphenols contributes to preserve intestinal health and growth performance of piglets during the post-weaning period. In the present experiment, we assessed if a supplementation with a mix of AA and grape extract polyphenols during the post-weaning period would persist to improve the pig capacity to cope with a subsequent challenge caused by poor hygiene of housing conditions. Eighty pigs weaned at 28 days of age were fed a standard diet supplemented (AAP) or not (CNT) with 0.2% of a blend of AA (glutamine, arginine, cystine, valine, isoleucine, and leucine) and grape extract polyphenols during the post-weaning period (from week 0 to 6). At week 6, pigs were transferred to a growing unit where 50% of pigs previously fed AAP and CNT diets were housed in good and the other 50% in poor hygiene conditions for 3 weeks (from week 7 to 9; challenge period). All pigs were fed a standard growing diet that was not supplemented with AAP. We measured pig growth performance, plasma indicators of inflammation, digestive integrity, and oxidative status, and scored fecal consistency. Differences were considered significant at P ≤ 0.05. RESULTS: One week post-weaning, pigs fed AAP had lower plasma concentrations of haptoglobin than CNT pigs (P = 0.03). Six weeks post-weaning, plasma concentrations of diamine oxidase (DAO) were lower (P = 0.03) whereas those of vitamin E and A were greater (P ≤ 0.05) in pigs fed AAP compared to CNT pigs. The prevalence of diarrhea was higher in CNT pigs compared to AAP pigs (P < 0.01). During the challenge period, only pigs previously fed CNT diet had lower growth rate in poor than good conditions (P ≤ 0.05). They had also greater plasma concentrations of haptoglobin and oxidative stress index (OSI) and lower plasma concentrations of vitamin E in poor than good hygiene conditions (P ≤ 0.05). CONCLUSIONS: Pigs fed AAP diet during post-weaning had less diarrhea and plasma concentrations of a digestive integrity marker, as well as greater plasma concentrations of antioxidant indicators during the post-weaning period. The beneficial effects of AAP supplementation persisted after the post-weaning period as evidenced by the absence of effects of the hygiene challenge on growth and health indicators in pigs previously fed APP. This clearly indicated a greater ability of pigs fed AAP to cope with the poor hygiene conditions.


Assuntos
Aminoácidos , Criação de Animais Domésticos , Vitis , Animais , Ração Animal/análise , Diarreia/prevenção & controle , Diarreia/veterinária , Dieta/veterinária , Suplementos Nutricionais , Haptoglobinas , Higiene , Suínos , Vitamina E , Desmame
4.
Eur J Nutr ; 62(1): 407-417, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36071290

RESUMO

PURPOSE: Protein synthesis and proteolysis are known to be controlled through mammalian target of rapamycin, AMP-activated kinase (AMPK) and general control non-derepressible 2 (GCN2) pathways, depending on the nutritional condition. This study aimed at investigating the contribution of liver AMPK and GCN2 on the adaptation to high variations in protein intake. METHODS: To evaluate the answer of protein pathways to high- or low-protein diet, male wild-type mice and genetically modified mice from C57BL/6 background with liver-specific AMPK- or GCN2-knockout were fed from day 25 diets differing in their protein level as energy: LP (5%), NP (14%) and HP (54%). Two hours after a 1 g test meal, protein synthesis rate was measured after a 13C valine flooding dose. The gene expression of key enzymes involved in proteolysis and GNC2 signaling pathway were quantified. RESULTS: The HP diet but not the LP diet was associated with a decrease in fractional synthesis rate by 29% in the liver compared to NP diet. The expression of mRNA encoding ubiquitin and Cathepsin D was not sensitive to the protein content. The deletion of AMPK or GCN2 in the liver did not affect nor protein synthesis rates and neither proteolysis markers in the liver or in the muscle, whatever the protein intake. In the postprandial state, protein level alters protein synthesis in the liver but not in the muscle. CONCLUSIONS: Taken together, these results suggest that liver AMPK and GCN2 are not involved in this adaptation to high- and low-protein diet observed in the postprandial period.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteínas Serina-Treonina Quinases , Camundongos , Masculino , Animais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Dieta com Restrição de Proteínas , Período Pós-Prandial , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Mamíferos/metabolismo
5.
Sci Rep ; 12(1): 14533, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008459

RESUMO

The aim of this study was to test the effect of mixing doses of glutamate (Glu) and glutamine (Gln) on the growth, health and gut health of post-weaning piglets. One hundred twenty weaned piglets (24 ± 2 days of age) were assigned to 6 dietary groups: (1) standard diet (CO); (2) CO plus Glu (6 kg/Ton): 100Glu; (3) CO plus 75Glu + 25Gln; (4) CO plus 50Glu + 50Gln; (5) CO plus 25Glu + 75Gln and (6) CO plus 100Gln. At days 8 and 21, blood was collected for haematological and reactive oxygen metabolite analysis, intestinal mucosa for morphological and gene expression analysis, and caecal content for microbial analysis. Data were fitted using a Generalised Linear Model (GLM). Piglet growth increased linearly with an increase in Gln from d7 to d14. The Glu:Gln ratio had a quadratic effect on faecal consistency and days of diarrhoea, neutrophil% and lymphocyte%, and a positive linear effect on monocyte% in the blood at d8. The amino acids (AAs) reduced the intraepithelial lymphocytes in the jejunum, and 100Gln improved intestinal barrier integrity at d8. The caecal microbiota did not differ. Overall, this study suggested a favourable effect of mixing Glu and Gln (25 + 75-50 + 50) as a dietary supplementation in post-weaning piglets to benefit the immune and barrier function of the gut, resulting in an increase in faecal consistency and improvement of growth during the first 2 weeks post-weaning.


Assuntos
Ácido Glutâmico , Glutamina , Ração Animal/análise , Animais , Dieta , Suplementos Nutricionais , Glutamina/metabolismo , Suínos , Desmame
6.
Microorganisms ; 10(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35456812

RESUMO

Functional amino acids supplementation to farm animals is considered to not only be beneficial by regulating intestinal barrier, oxidative stress, and immunity, but potentially also by impacting the gut microbiota. The impact of amino acids on a piglet-derived colonic microbiota was evaluated using a 48-h in vitro batch incubation strategy. The combination of 16S rRNA gene profiling with flow cytometry demonstrated that specific microbial taxa were involved in the fermentation of each of the amino acids resulting in the production of specific metabolites. Branched chain amino acids (leucine, isoleucine, valine) strongly increased branched-chain fatty acids (+23.0 mM) and valerate levels (+3.0 mM), coincided with a marked increase of Peptostreptococcaceae. Further, glutamine and glutamate specifically stimulated acetate (~20 mM) and butyrate (~10 mM) production, relating to a stimulation of a range of families containing known butyrate-producing species (Ruminococcaceae, Oscillospiraceae, and Christensenellaceae). Finally, while tryptophan was only fermented to a minor extent, arginine and lysine specifically increased propionate levels (~2 mM), likely produced by Muribaculaceae members. Overall, amino acids were thus shown to be selectively utilized by microbes originating from the porcine colonic microbiota, resulting in the production of health-related short-chain fatty acids, thus confirming the prebiotic potential of specific functional amino acids.

7.
Amino Acids ; 54(10): 1357-1369, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34642825

RESUMO

Weaning is a challenging period for gut health in piglets. Previous studies showed that dietary supplementations with either amino acids or polyphenols promote piglet growth and intestinal functions, when administered separately. Thus, we hypothesized that a combination of amino acids and polyphenols could facilitate the weaning transition. Piglets received during the first two weeks after weaning a diet supplemented or not with a mix of a low dose (0.1%) of functional amino acids (L-arginine, L-leucine, L-valine, L-isoleucine, L-cystine) and 100 ppm of a polyphenol-rich extract from grape seeds and skins. The mix of amino acids and polyphenols improved growth and feed efficiency. These beneficial effects were associated with a lower microbiota diversity and a bloom of Lactobacillaceae in the jejunum content while the abundance of Proteobacteria was reduced in the caecum content. The mix of amino acids and polyphenols also increased the production by the caecum microbiota of short-chain fatty acids (butyrate, propionate) and of metabolites derived from amino acids (branched-chain fatty acids, valerate, putrescine) and from polyphenols (3-phenylpropionate). Experiments in piglet jejunum organoids revealed that the mix of amino acids and polyphenols upregulated the gene expression of epithelial differentiation markers while it reduced the gene expression of proliferation and innate immunity markers. In conclusion, the supplementation of a mix of amino acids and polyphenols is a promising nutritional strategy to manage gut health in piglets through the modulation of the gut microbiota and of the epithelial barrier.


Assuntos
Microbioma Gastrointestinal , Vitis , Suínos , Animais , Ração Animal/análise , Polifenóis/farmacologia , Aminoácidos/farmacologia , Organoides , Desmame , Suplementos Nutricionais , Homeostase
8.
Poult Sci ; 101(1): 101625, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34930533

RESUMO

Eimeria infections impair digestive tract capacity and barrier function leading to poor growth and feed efficiency. A meta-analysis approach was used to evaluate and quantify impact of Eimeria infection on the apparent ileal digestibility (AID) of amino acids (AA) in broiler chickens. A database composed of 6 articles with a total of 21 experiments was built for the effect of challenge type (a mix of Eimeria spp. vs. E. acervulina) and subdatabase of 3 articles with a total of 15 experiments for the effect of E. acervulina dose response. Regression models were fitted with the mixed model procedure in Minitab 19 with fixed effects of challenge, species, and their interactions. For the sub database, the mixed model procedure was used to fit regression models and identify a linear or quadratic response to dose. Challenge decreased AID (P < 0.05) of both dispensable and indispensable AA except for Trp. Specifically, the largest depression was observed for Cys, Thr, Tyr, Ala, and Val with the magnitude of difference of 8.7, 5.4, 5.2, 5.1, and 4.9%, respectively for challenged vs. unchallenged birds. The type of challenge affected (P < 0.05) AID of AA with exception of Cys, Tyr, Ala, Ser, Leu, Asp, Gly, and Pro. E. acervulina challenge had larger negative effects on AID of Ile, Leu, and Val. Moreover, E. acervulina linearly decreased (P < 0.05) AID of all indispensable and dispensable AA except for Trp and quadratically (P < 0.05) decreased AID of all AA except Cys, Met, Arg, and Trp. The largest linear decrease due to E. acervulina dose was seen for AID of Cys, followed by Ala, Val, Thr, and Ile. Although, AID of Trp was not affected by E. acervulina challenge, mixed Eimeria species challenge decreased (P < 0.05) AID of Trp. Overall, the results confirmed that an Eimeria infection negatively impacted AA digestibility/utilization. The ranking of the most affected AA suggested ground for nutritional intervention during subclinical field Eimeria infections or vaccination programs.


Assuntos
Aminoácidos , Eimeria , Animais , Galinhas
9.
Front Nutr ; 9: 1066898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601082

RESUMO

Prebiotics are dietary substrates which promote host health when utilized by desirable intestinal bacteria. The most commonly used prebiotics are non-digestible oligosaccharides but the prebiotic properties of other types of nutrients such as polyphenols are emerging. Here, we review recent evidence showing that amino acids (AA) could function as a novel class of prebiotics based on: (i) the modulation of gut microbiota composition, (ii) the use by selective intestinal bacteria and the transformation into bioactive metabolites and (iii) the positive impact on host health. The capacity of intestinal bacteria to metabolize individual AA is species or strain specific and this property is an opportunity to favor the growth of beneficial bacteria while constraining the development of pathogens. In addition, the chemical diversity of AA leads to the production of multiple bacterial metabolites with broad biological activities that could mediate their prebiotic properties. In this context, we introduce the concept of "Aminobiotics," which refers to the functional role of some AA as prebiotics. We also present studies that revealed synergistic effects of the co-administration of AA with probiotic bacteria, indicating that AA can be used to design novel symbiotics. Finally, we discuss the difficulty to bring free AA to the distal gut microbiota and we propose potential solutions such as the use of delivery systems including encapsulation to bypass absorption in the small intestine. Future studies will need to further identify individual AA, dose and mode of administration to optimize prebiotic effects for the benefit of human and animal health.

10.
Animals (Basel) ; 11(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34438873

RESUMO

Two experiments were conducted to investigate the effect of arginine (Arg); the combination of Arg and glutamine (Gln); as well as an amino acid-based solution (MIX) containing Arg, Gln, threonine (Thr), and grape extract, on performance, intestinal permeability, and expression of selected mechanistic genes. Using 240 male Ross 308 off-sex broiler chickens, four experimental treatments were replicated six times with 10 birds per replicate. The experimental treatments included 5 g/kg Arg, 2.5 g/kg Arg and 2.5 g/kg Gln, and 1 g/kg MIX added to a basal diet as control. In the second study, the four dietary treatments were then given to 24 birds with or without a synthetic glucocorticoid, dexamethasone (DEX), as a gut dysfunction model. Feed conversion ratio was improved by all the supplemented treatments from day 7 to 35 of age (p < 0.001). DEX injections increased (p < 0.001) the intestinal permeability in all treatments, which tended to be reversed by Arg or MIX. Additional Arg, Arg-Gln, and MIX suppressed (p < 0.05) the overexpression of IL-1ß generated by DEX. Feeding birds with MIX treatment increased (p < 0.05) expression of SGLT-1 and glutathione synthetase. In conclusion, tested amino acid supplements were effective in improving feed efficiency and restraining intestinal inflammation caused by DEX through IL-1ß pathway.

11.
Front Vet Sci ; 8: 663727, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113671

RESUMO

In pigs and broiler chickens, the gastrointestinal tract or gut is subjected to many challenges which alter performance, animal health, welfare and livability. Preventive strategies are needed to mitigate the impacts of these challenges on gut health while reducing the need to use antimicrobials. In the first part of the review, we propose a common definition of gut health for pig and chickens relying on four pillars, which correspond to the main functions of the digestive tract: (i) epithelial barrier and digestion, (ii) immune fitness, (iii) microbiota balance and (iv) oxidative stress homeostasis. For each pillar, we describe the most commonly associated indicators. In the second part of the review, we present the potential of functional amino acid supplementation to preserve and improve gut health in piglets and chickens. We highlight that amino acid supplementation strategies, based on their roles as precursors of energy and functional molecules, as signaling molecules and as microbiota modulators can positively contribute to gut health by supporting or restoring its four intertwined pillars. Additional work is still needed in order to determine the effective dose of supplementation and mode of administration that ensure the full benefits of amino acids. For this purpose, synergy between amino acids, effects of amino acid-derived metabolites and differences in the metabolic fate between free and protein-bound amino acids are research topics that need to be furtherly investigated.

12.
Animals (Basel) ; 11(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923708

RESUMO

In order to investigate the effect of a dietary amino acid mixture supplementation in lipopolysaccharide (LPS)-challenged weaned piglets, twenty-seven 28-day-old (8.2 ± 1.0 kg) newly weaned piglets were randomly allocated to one of three experimental treatments for five weeks. Diet 1: a CTRL treatment. Diet 2: an LPS treatment, where piglets were intraperitoneally administered LPS (25 µg/kg) on day 7. Diet 3: an LPS+MIX treatment, where piglets were intraperitoneally administered LPS on day 7 and fed a diet supplemented with a mixture of 0.3% of arginine, branched-chain amino acids (leucine, valine, and isoleucine), and cystine (MIX). Blood samples were drawn on day 10 and day 35, and serum was analysed for selected chemical parameters and proteomics. The LPS and LPS+MIX groups exhibited an increase in haptoglobin concentrations on day 10. The LPS group showed an increased cortisol concentration, while this concentration was reduced in the LPS+MIX group compared to the control group. Similarly, the LPS+MIX group showed a decreased haptoglobin concentration on day 35 compared to the two other groups. Immunoglobulin concentrations were affected by treatments. Indeed, on day 10, the concentrations of IgG and IgM were decreased by the LPS challenge, as illustrated by the lower concentrations of these two immunoglobulins in the LPS group compared to the control group. In addition, the supplementation with the amino acid mixture in the LPS+MIX further decreased IgG and increased IgM concentrations compared to the LPS group. Although a proteomics approach did not reveal important alterations in the protein profile in response to treatments, LPS-challenged piglets had an increase in proteins linked to the immune response, when compared to piglets supplemented with the amino acid mixture. Overall, data indicate that LPS-challenged piglets supplemented with this amino acid mixture are more protected against the detrimental effects of LPS.

13.
PLoS One ; 16(1): e0245739, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33465153

RESUMO

The regulation of glycerol permeability in the gastrointestinal tract is crucial to control fat deposition, lipolysis and gluconeogenesis. Knowing that the amino acid glutamine is a physiological regulator of gluconeogenesis, whereas cystine promotes adiposity, herein we investigated the effects of dietary supplementation with glutamine and cystine on the serum biochemical parameters of piglets fed on amino acid-enriched diets, as well as on the transcriptional profile of membrane water and glycerol channels aquaporins (AQPs) in the ileum portion of the small intestine and its impact on intestinal permeability. Twenty male piglets with an initial body weight of 8.8 ± 0.89 kg were allocated to four dietary treatments (n = 5) and received, during a four week-period, a basal diet without supplementation (control) or supplemented with 8 kg/ton of glutamine (Gln), cystine (Cys) or the combination of the two amino acids in equal proportions (Gln + Cys). Most biochemical parameters were found improved in piglets fed Gln and Cys diet. mRNA levels of AQP3 were found predominant over the others. Both amino acids, individually or combined, were responsible for a consistent downregulation of AQP1, AQP7 and AQP10, without impacting on water permeability. Conversely, Cys enriched diet upregulated AQP3 enhancing basolateral membranes glycerol permeability and downregulating glycerol kinase (GK) of intestinal cells. Altogether, our data reveal that amino acids dietary supplementation can modulate intestinal AQPs expression and unveil AQP3 as a promising target for adipogenesis regulation.


Assuntos
Ração Animal/análise , Aquaporinas/metabolismo , Cistina/farmacologia , Suplementos Nutricionais , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamina/farmacologia , Intestino Delgado/metabolismo , Animais , Animais Recém-Nascidos , Aquaporinas/genética , Cistina/administração & dosagem , Glutamina/administração & dosagem , Intestino Delgado/efeitos dos fármacos , Masculino , Suínos
14.
Sci Rep ; 9(1): 18496, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811253

RESUMO

Dose-response studies of dietary leucine (Leu) in weaners are needed for a proper diet formulation. Dietary Leu effect was assessed in a 3-weeks dose-response trial with a 2 (genotype) x 5 (diets) factorial arrangement on one-hundred weaned pigs (9 to 20 kg body weight (BW)). Pigs differed for a polymorphism at the aminoadipate-semialdehyde synthase (AASS) gene, involved in lysine (Lys) metabolism. Pigs received experimental diets (d7 to d28) differing for the standardized ileal digestible (SID) Leu:Lys: 70%, 85%, 100%, 115%, 130%. Daily feed intake (ADFI), daily gain (ADG) and feed:gain (F:G) in all pigs and ADG and F:G in two classes of BW were analyzed using regression analysis with curvilinear-plateau (CLP) and linear quadratic function (LQ) models. Amino acid (AA) concentrations in plasma, liver, muscle and urine were determined. AASS genotype did not affect the parameters. Dietary Leu affected performance parameters, with a maximum response for ADG and F:G between 100.5% and 110.7% SID Leu:Lys, higher than the usually recommended one, and between 110.5% and 115.4% and between 94.9% and 110.2% SID Leu:Lys for ADG for light and heavy pigs respectively. AA variations in tissues highlighted Leu role in protein synthesis and its influence on the other branched chain AAs.


Assuntos
Aminoácidos/metabolismo , Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Dieta , L-Aminoadipato-Semialdeído Desidrogenase/genética , Leucina/metabolismo , Ração Animal , Animais , Genótipo , Suínos
15.
Am J Physiol Endocrinol Metab ; 317(6): E1015-E1021, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31573843

RESUMO

General control nonderepressible 2 (GCN2) is a kinase that detects amino acid deficiency and is involved in the control of protein synthesis and energy metabolism. However, the role of hepatic GCN2 in the metabolic adaptations in response to the modulation of dietary protein has been seldom studied. Wild-type (WT) and liver GCN2-deficient (KO) mice were fed either a normo-protein diet, a low-protein diet, or a high-protein diet for 3 wk. During this period, body weight, food intake, and metabolic parameters were followed. In mice fed normo- and high-protein diets, GCN2 pathway in the liver is not activated in WT mice, leading to a similar metabolic profile with the one of KO mice. On the contrary, a low-protein diet activates GCN2 in WT mice, inducing FGF21 secretion. In turn, FGF21 maintains a high level of lipid oxidation, leading to a different postprandial oxidation profile compared with KO mice. Hepatic GCN2 controls FGF21 secretion under a low-protein diet and modulates a whole body postprandial oxidation profile.


Assuntos
Dieta com Restrição de Proteínas , Metabolismo Energético/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/metabolismo , Proteínas Serina-Treonina Quinases/genética , Tecido Adiposo/metabolismo , Animais , Composição Corporal , Peso Corporal , Dieta Rica em Proteínas , Comportamento Alimentar , Glucose/metabolismo , Glicogênio/metabolismo , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Oxirredução , Período Pós-Prandial , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Triglicerídeos/metabolismo
16.
J Nutr ; 147(9): 1669-1676, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28747486

RESUMO

Background: Hepatic AMP-activated kinase (AMPK) activity is sensitive to the dietary carbohydrate-to-protein ratio. However, the role of AMPK in metabolic adaptations to variations in dietary macronutrients remains poorly understood.Objective: The objective of this study was to determine the role of hepatic AMPK in the adaptation of energy metabolism in response to modulation of the dietary carbohydrate-to-protein ratio.Methods: Male 7-wk-old wild-type (WT) and liver AMPK-deficient (knockout) mice were fed either a normal-protein and normal-carbohydrate diet (NP-NC; 14% protein, 76% carbohydrate on an energy basis), a low-protein and high-carbohydrate diet (LP-HC; 5% protein, 85% carbohydrate), or a high-protein and low-carbohydrate diet (HP-LC; 55% protein, 35% carbohydrate) for 3 wk. During this period, after an overnight fast, metabolic parameters were measured and indirect calorimetry was performed in mice during the first hours after refeeding a 1-g calibrated meal of their own diet in order to investigate lipid and carbohydrate metabolism.Results: Knockout mice fed an LP-HC or HP-LC meal exhibited 24% and 8% lower amplitudes in meal-induced carbohydrate and lipid oxidation changes. By contrast, knockout mice fed an NP-NC meal displayed normal carbohydrate and lipid oxidation profiles. These mice exhibited a transient increase in hepatic triglycerides and a decrease in hepatic glycogen. These changes were associated with a 650% higher secretion of fibroblast growth factor 21 (FGF21) 2 h after refeeding.Conclusions: The consequences of hepatic AMPK deletion depend on the dietary carbohydrate-to-protein ratio. In mice fed the NP-NC diet, deletion of AMPK in the liver led to an adaptation of liver metabolism resulting in increased secretion of FGF21. These changes possibly compensated for the absence of hepatic AMPK, as these mice exhibited normal postprandial changes in carbohydrate and lipid oxidation. By contrast, in mice fed the LP-HC and HP-LC diets, the lack of adjustment in liver metabolism in knockout mice resulted in a metabolic inflexibility, leading to a reduced amplitude of meal-induced changes in carbohydrate and lipid oxidation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo dos Carboidratos , Carboidratos da Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Metabolismo dos Lipídeos , Fígado/efeitos dos fármacos , Período Pós-Prandial , Proteínas Quinases Ativadas por AMP/deficiência , Adaptação Fisiológica , Animais , Dieta , Dieta com Restrição de Carboidratos , Dieta com Restrição de Proteínas , Carboidratos da Dieta/metabolismo , Carboidratos da Dieta/farmacologia , Gorduras na Dieta/metabolismo , Proteínas Alimentares/metabolismo , Proteínas Alimentares/farmacologia , Metabolismo Energético/efeitos dos fármacos , Jejum , Fatores de Crescimento de Fibroblastos/metabolismo , Glicogênio/metabolismo , Fígado/metabolismo , Masculino , Refeições , Camundongos Knockout , Oxirredução , Triglicerídeos/metabolismo
17.
Front Nutr ; 4: 5, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28373974

RESUMO

Obesity is an increasing major public health concern asking for dietary strategies to limit weight gain and associated comorbidities. In this review, we present animal models, particularly rats and mice, which have been extensively used by scientists to understand the consequences of diet quality on weight gain and health. Notably, modulation of dietary protein quantity and/or quality has been shown to exert huge effects on body composition homeostasis through the modulation of food intake, energy expenditure, and metabolic pathways. Interestingly, the perinatal window appears to represent a critical period during which the protein intake of the dam can impact the offspring's weight gain and feeding behavior. Animal models are also widely used to understand the processes and mechanisms that contribute to obesity at different physiological and pathophysiological stages. An interesting example of such aspect is the situation of decreased estrogen level occurring at menopause, which is linked to weight gain and decreased energy expenditure. To study metabolic disorders associated with such situation, estrogen withdrawal in ovariectomized animal models to mimic menopause are frequently used. According to many studies, clear species-specific differences exist between rats and mice that need to be taken into account when results are extrapolated to humans.

18.
J Nutr ; 147(3): 281-292, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28122929

RESUMO

Dietary protein may play an important role in the prevention of metabolic dysfunctions. However, the way in which the protein source affects these dysfunctions has not been clearly established. The aim of the current systematic review was to compare the impact of plant- and animal-sourced dietary proteins on several features of metabolic syndrome in humans. The PubMed database was searched for both chronic and acute interventional studies, as well as observational studies, in healthy humans or those with metabolic dysfunctions, in which the impact of animal and plant protein intake was compared while using the following variables: cholesterolemia and triglyceridemia, blood pressure, glucose homeostasis, and body composition. Based on data extraction, we observed that soy protein consumption (with isoflavones), but not soy protein alone (without isoflavones) or other plant proteins (pea and lupine proteins, wheat gluten), leads to a 3% greater decrease in both total and LDL cholesterol compared with animal-sourced protein ingestion, especially in individuals with high fasting cholesterol concentrations. This observation was made when animal proteins were provided as a whole diet rather than given supplementally. Some observational studies reported an inverse association between plant protein intake and systolic and diastolic blood pressure, but this was not confirmed by intervention studies. Moreover, plant protein (wheat gluten, soy protein) intake as part of a mixed meal resulted in a lower postprandial insulin response than did whey. This systematic review provides some evidence that the intake of soy protein associated with isoflavones may prevent the onset of risk factors associated with cardiovascular disease, i.e., hypercholesterolemia and hypertension, in humans. However, we were not able to draw any further conclusions from the present work on the positive effects of plant proteins relating to glucose homeostasis and body composition.


Assuntos
Proteínas Alimentares , Carne/normas , Síndrome Metabólica/sangue , Proteínas de Plantas/normas , Animais , Pressão Sanguínea , Humanos , Lipídeos/sangue , Síndrome Metabólica/metabolismo
19.
J Nutr Biochem ; 36: 60-67, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27574977

RESUMO

Fibroblast growth factor 21 (FGF21) is a polypeptide secreted by the liver and involved in several metabolic processes such as thermogenesis and lipid oxidation. The nutritional mechanisms controlling FGF21 production are poorly understood. This study aimed to investigate how dietary carbohydrates and proteins impact FGF21 production and how in turn, FGF21 is involved in the metabolic adaptation to changes in the carbohydrate and protein contents of the diet. For that purpose, we fed 25 male C57BL/6 mice diets composed of different protein and carbohydrate contents (normal-protein and carbohydrate diet (N=9, NPNC), low-protein high-carbohydrate diet (N=8, LPHC), high-protein low-carbohydrate diet (N=8, HPLC) for 3 weeks. We measured liver Fgf21 gene expression, synthesis and secretion as well as different parameters related to energy and glucose metabolism. We also investigated the direct role of amino acids and glucose in the control of Fgf21 gene expression in hepatocyte primary cultures (n=6). In vivo, FGF21 responds acutely to LPHC intake whereas under an HPLC diet, plasma FGF21 circulating levels are low in the fasted and refed states. In hepatocytes, Fgf21 expression was controlled by glucose but not amino acids. Both diets increased the thermic effect of feeding (TEF) and ketogenesis was increased in fasted HPLC mice. The results presented suggest that dietary glucose, rather than amino acids, directly controls FGF21 secretion, and that FGF21 may be involved in the increased TEF response to LPHC. The effects of the HPLC diet on ketogenesis and TEF are probably controlled by other metabolic pathways.


Assuntos
Dieta com Restrição de Proteínas/efeitos adversos , Proteínas Alimentares/administração & dosagem , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fígado/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Aminoácidos/metabolismo , Animais , Células Cultivadas , Dieta com Restrição de Carboidratos/efeitos adversos , Metabolismo Energético , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/genética , Glucose/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Fígado/citologia , Fígado/crescimento & desenvolvimento , Masculino , Camundongos Endogâmicos C57BL , Período Pós-Prandial , RNA Mensageiro/metabolismo , Ratos , Desmame
20.
Am J Physiol Regul Integr Comp Physiol ; 310(11): R1169-76, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27030668

RESUMO

We tested the hypothesis that, for rats fed a high-fat diet (HFD), a prioritization of maintaining protein intake may increase energy consumption and hence result in obesity, particularly for individuals prone to obesity ("fat sensitive," FS, vs. "fat resistant," FR). Male Wistar rats (n = 80) first received 3 wk of HFD (protein 15%, fat 42%, carbohydrate 42%), under which they were characterized as being FS (n = 18) or FR (n = 20) based on body weight gain. They then continued on the same HFD but in which protein (100%) was available separately from the carbohydrate:fat (50:50%) mixture. Under this second regimen, all rats maintained their previous protein intake, whereas intake of fat and carbohydrate was reduced by 50%. This increased protein intake to 26% and decreased fat intake to 37%. Adiposity gain was prevented in both FR and FS rats, and gain in fat-free mass was increased only in FS rats. At the end of the study, the rats were killed 2 h after ingestion of a protein meal, and their tissues and organs were collected for analysis of body composition and measurement of mRNA levels in the liver, adipose tissue, arcuate nucleus, and nucleus accumbens. FS rats had a higher expression of genes encoding enzymes involved in lipogenesis in the liver and white adipose tissue. These results show that FS rats strongly reduced food intake and adiposity gain through macronutrient selection, despite maintenance of a relatively high-fat intake and overexpression of genes favoring lipogenesis.


Assuntos
Adiposidade , Dieta Hiperlipídica , Carboidratos da Dieta/metabolismo , Gorduras na Dieta/metabolismo , Proteínas Alimentares/metabolismo , Ingestão de Energia , Obesidade/fisiopatologia , Animais , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA