Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 435(3): 167929, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566799

RESUMO

We have previously shown that the CBb subunit of crotoxin, a ß-neurotoxin with phospholipase A2 (PLA2) activity, targets the human ΔF508CFTR chloride channel implicated in cystic fibrosis (CF). By direct binding to the nucleotide binding domain 1 (NBD1) of ΔF508CFTR, this neurotoxic PLA2 acts as a potentiator increasing chloride channel current and corrects the trafficking defect of misfolded ΔF508CFTR inside the cell. Here, for a therapeutics development of new anti-cystic fibrosis agents, we use a structure-based in silico approach to design peptides mimicking the CBb-ΔF508NBD1 interface. Combining biophysical and electrophysiological methods, we identify several peptides that interact with the ΔF508NBD1 domain and reveal their effects as potentiators on phosphorylated ΔF508CFTR. Moreover, protein-peptide interactions and electrophysiological studies allowed us to identify key residues of ΔF508NBD1 governing the interactions with the novel potentiators. The designed peptides bind to the same region as CBb phospholipase A2 on ΔF508NBD1 and potentiate chloride channel activity. Certain peptides also show an additive effect towards the clinically approved VX-770 potentiator. The identified CF therapeutics peptides represent a novel class of CFTR potentiators and illustrate a strategy leading to reproducing the effect of specific protein-protein interactions.


Assuntos
Crotoxina , Regulador de Condutância Transmembrana em Fibrose Cística , Peptídeos , Humanos , Crotoxina/química , Crotoxina/farmacologia , Fibrose Cística , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mutação , Peptídeos/química , Fosfolipases/metabolismo , Fosfolipases A2/metabolismo
2.
J Pharmacol Toxicol Methods ; 115: 107172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35427763

RESUMO

As a branch of quantitative systems toxicology, in silico simulations are of growing attractiveness to guide preclinical cardiosafety risk assessments. Traditionally, a cascade of in vitro/in vivo assays has been applied in pharmaceutical research to screen out molecules at risk for cardiac side effects and prevent subsequent risk for patients. Drug cardiosafety assessments typically employ early mechanistic, hazard-oriented in silico/in vitro assays for compound inhibition of cardiac ion channels, followed by induced pluripotent stem cells (iPSCs) or tissue-based models such as the rabbit Purkinje fiber assay, which includes the major mechanisms contributing to action potential (AP) genesis. Additionally, multiscale simulation techniques based on mathematical models have become available, which are performed in silico 'at the heart' of compound triage to substitute Purkinje tests and increase translatability through mechanistic interpretability. To adhere to the 3R principle and reduce animal experiments, we performed a comparative benchmark and investigated a variety of mathematical cardiac AP models, including a newly developed minimalistic model specifically tailored to the AP of rabbit Purkinje cells, for their ability to substitute experiments. The simulated changes in AP duration (dAPD90) at increasing drug concentrations were compared to experimental results from 588 internal Purkinje fiber studies covering 555 different drugs with diverse modes of action. Using our minimalistic model, 80% of the Purkinje experiments could be quantitatively reproduced. This result allows for significant saving of experimental effort in early research and justifies the embedding of electrophysiological simulations into the DMTA (Design, Make, Test, Analyze) cycle in pharmaceutical compound optimization.


Assuntos
Fenômenos Eletrofisiológicos , Ramos Subendocárdicos , Potenciais de Ação , Animais , Simulação por Computador , Humanos , Preparações Farmacêuticas , Ramos Subendocárdicos/fisiologia , Coelhos
3.
Eur J Pharmacol ; 915: 174670, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34863995

RESUMO

Hydroxychloroquine (HCQ) is a derivative of the antimalaria drug chloroquine primarily prescribed for autoimmune diseases. Recent attempts to repurpose HCQ in the treatment of corona virus disease 2019 has raised concerns because of its propensity to prolong the QT-segment on the electrocardiogram, an effect associated with increased pro-arrhythmic risk. Since chirality can affect drug pharmacological properties, we have evaluated the functional effects of the R(-) and S(+) enantiomers of HCQ on six ion channels contributing to the cardiac action potential and on electrophysiological parameters of isolated Purkinje fibers. We found that R(-)HCQ and S(+)HCQ block human Kir2.1 and hERG potassium channels in the 1 µM-100 µM range with a 2-4 fold enantiomeric separation. NaV1.5 sodium currents and CaV1.2 calcium currents, as well as KV4.3 and KV7.1 potassium currents remained unaffected at up to 90 µM. In rabbit Purkinje fibers, R(-)HCQ prominently depolarized the membrane resting potential, inducing autogenic activity at 10 µM and 30 µM, while S(+)HCQ primarily increased the action potential duration, inducing occasional early afterdepolarization at these concentrations. These data suggest that both enantiomers of HCQ can alter cardiac tissue electrophysiology at concentrations above their plasmatic levels at therapeutic doses, and that chirality does not substantially influence their arrhythmogenic potential in vitro.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Coração/efeitos dos fármacos , Hidroxicloroquina/química , Hidroxicloroquina/farmacologia , Canais Iônicos/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/induzido quimicamente , Eletrocardiografia , Técnicas Eletrofisiológicas Cardíacas , Canais de Potássio Éter-A-Go-Go , Humanos , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp , Ramos Subendocárdicos/efeitos dos fármacos , Coelhos , Estereoisomerismo
4.
Br J Pharmacol ; 176(9): 1298-1314, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30784059

RESUMO

BACKGROUND AND PURPOSE: The NaV 1.7 channel is highly expressed in dorsal root ganglia of the sensory nervous system and plays a central role in the pain signalling process. We investigated a library prepared from original venoms of 117 different animals to identify new selective inhibitors of this target. EXPERIMENTAL APPROACH: We used high throughput screening of a large venom collection using automated patch-clamp experiments on human voltage-gated sodium channel subtypes and then in vitro and in vivo electrophysiological experiments to characterize the active peptides that have been purified, sequenced, and chemically synthesized. Analgesic effects were evaluated in vivo in mice models. KEY RESULTS: We identified cyriotoxin-1a (CyrTx-1a), a novel peptide isolated from Cyriopagopus schioedtei spider venom, as a candidate for further characterization. This 33 amino acids toxin belongs to the inhibitor cystine knot structural family and inhibits hNaV 1.1-1.3 and 1.6-1.7 channels in the low nanomolar range, compared to the micromolar range for hNaV 1.4-1.5 and 1.8 channels. CyrTx-1a was 920 times more efficient at inhibiting tetrodotoxin (TTX)-sensitive than TTX-resistant sodium currents recorded from adult mouse dorsal root ganglia neurons and in vivo electrophysiological experiments showed that CyrTx-1a was approximately 170 times less efficient than huwentoxin-IV at altering mouse skeletal neuromuscular excitability properties. CyrTx-1a exhibited an analgesic effect in mice by increasing reaction time in the hot-plate assay. CONCLUSIONS AND IMPLICATIONS: The pharmacological profile of CyrTx-1a paves the way for further molecular engineering aimed to optimize the potential antinociceptive properties of this peptide.


Assuntos
Analgésicos/farmacologia , Antagonistas de Entorpecentes/farmacologia , Dor/tratamento farmacológico , Bloqueadores dos Canais de Sódio/farmacologia , Venenos de Aranha/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Analgésicos/química , Analgésicos/isolamento & purificação , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Camundongos , Antagonistas de Entorpecentes/química , Antagonistas de Entorpecentes/isolamento & purificação , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/isolamento & purificação , Venenos de Aranha/química , Venenos de Aranha/isolamento & purificação , Aranhas
5.
Curr Protoc Pharmacol ; 75: 9.21.1-9.21.35, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27960031

RESUMO

Over the last six decades, voltage-gated sodium (Nav ) channels have attracted a great deal of scientific and pharmaceutical interest, driving fundamental advances in both biology and technology. The structure and physiological function of these channels have been extensively studied; clinical and genetic data have uncovered their implication in diseases such as epilepsy, arrhythmias, and pain, bringing them into focus as current and future drug targets. While different techniques have been established to record the activity of Nav channels, proper determination of their properties still presents serious challenges, depending upon the experimental conditions and the desired subtype of channel to be characterized. The aim of this unit is to review the characteristics of Nav channels, their properties, the cells in which they can be studied, and the currently available techniques. Topics covered include the determination of Nav -channel biophysical properties as well as the use of toxins to discriminate between subtypes using electrophysiological or optical methods. Perspectives on the development of high-throughput screening assays with their advantages and limitations are also discussed to allow a better understanding of the challenges encountered in voltage-gated sodium channel preclinical drug discovery. © 2016 by John Wiley & Sons, Inc.


Assuntos
Descoberta de Drogas/métodos , Canais de Sódio/metabolismo , Animais , Linhagem Celular , Fenômenos Eletrofisiológicos , Ensaios de Triagem em Larga Escala , Humanos , Potenciais da Membrana , Camundongos , Ratos , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/genética
6.
J Biomol Screen ; 19(3): 468-77, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23954932

RESUMO

Since the cloning of its first member in 1998, transient receptor potential (TRP) cation channels have become one of the most studied ion channel families in drug discovery. These channels, almost all calcium permeant, have been studied in many different (patho)-physiological and therapeutic areas as diverse as pain; neurodegenerative, cardiovascular, and inflammatory diseases; and cancer. At the same time, implementation of automated electrophysiology screening platforms has significantly increased the tractability of ion channels, mainly voltage gated, as drug targets. The work presented in this article shows the design and validation of TRP screening assays using the IonWorks Quattro platform (Molecular Devices, Sunnyvale, CA), allowing a significant increase in throughput to support drug discovery programs. This new player has a direct impact on resources and timelines by prioritizing potential candidates and reducing the number of molecules requiring final testing by manual patch-clamp, which is still today the gold standard technology for this challenging drug target class.


Assuntos
Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos , Técnicas de Patch-Clamp , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Linhagem Celular , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Canais de Potencial de Receptor Transitório/agonistas , Canais de Potencial de Receptor Transitório/antagonistas & inibidores
7.
Novartis Found Symp ; 273: 59-68; discussion 68-73, 261-4, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17120761

RESUMO

Two members of the SLC26 superfamily of transport proteins are expressed in the mammalian inner ear. These are pendrin (SLC26A4) and prestin (SLC26A5). Mutations in either lead to deafness but for different reasons. Prestin forms the molecular underpinning of the mechanical feedback step in cochlear amplification. The outer hair cell (OHC) motor basolateral membrane contains a high density of prestin (more than 10(7) copies per cell). OHCs can thus act as a laboratory to study this transporter. Before prestin was identified by a subtractive cDNA strategy, it was recognized that OHCs selectively transport fructose. Cylindrical OHCs swell reversibly and therefore shorten on exposure to iso-osmotic replacement of bath glucose with fructose. The uptake is saturable with Km = 16mM. We studied such transport in a heterologous expression system. Prestin expression levels, assayed by electrophysiology, were at least 30 times lower than in OHCs. Radioactive flux measurements show that fructose was transported into transfected cells. Measuring fluxes by cell swelling suggested that about 300 water molecules are co-transported per fructose, probably through the same salicylate-sensitive pore. Pendrin shares the same properties. The phenomenon reveals features of the extracellular surface of SLC26 while charge translocation reveals anion binding features of intracellular surface.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Metabolismo dos Carboidratos , Animais , Humanos , Água/metabolismo
8.
Audiol Neurootol ; 7(1): 6-8, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11914517

RESUMO

The strides made over the last few years towards understanding many details of cochlear function still leave a number of issues unresolved. Integrating the information from molecular, genetic and, increasingly, genomic sources requires models that provide close matching between data and theory. For both theoretical and experimental reasons, the difficult area in cochlear physiology has been to understand how sensory transduction operates at the basal end of the mammalian cochlea. The identification of candidate motor proteins in outer hair cells (OHCs) draws attention to the question of whether we understand cochlear tuning. Nevertheless, the association of the cloned motor protein 'prestin' with an anion transporter superfamily provides clues about the molecular nature of the OHC motor in the basolateral membrane, the utilisation of chloride in hair cells and the long-term stability of small basal turn cochlear hair cells.


Assuntos
Cóclea/fisiologia , Audição/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas de Transporte de Ânions , Expressão Gênica/fisiologia , Transportador de Glucose Tipo 5 , Células Ciliadas Auditivas Externas/fisiologia , Humanos , Proteínas Motores Moleculares/fisiologia , Proteínas de Transporte de Monossacarídeos/genética , Proteínas/genética , Transportadores de Sulfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA