Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
bioRxiv ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38617339

RESUMO

The heterotrimeric G-protein α subunit, Gα olf , acts to transduce extracellular signals through G-protein coupled receptors (GPCRs) and stimulates adenylyl cyclase mediated production of the second messenger cyclic adenosine monophosphate. Numerous mutations in the GNAL gene, which encodes Gα olf , have been identified as causative for an adult-onset dystonia. These mutations disrupt GPCR signaling cascades in in vitro assays through several mechanisms, and this disrupted signaling is hypothesized to lead to dystonic motor symptoms in patients. However, the cells and circuits that mutations in GNAL corrupt are not well understood. Published patterns of Gα olf expression outside the context of the striatum are sparse, conflicting, often lack cell type specificity, and may be confounded by expression of the close GNAL homolog of GNAS . Here, we use RNAScope in-situ hybridization to quantitatively characterize Gnal mRNA expression in brain tissue from wildtype C57BL/6J adult mice. We observed widespread expression of Gnal puncta throughout the brain, suggesting Gα olf is expressed in more brain structures and neuron types than previously accounted for. We quantify transcripts at a single cell level, and use neuron type specific markers to further classify and understand patterns of GNAL expression. Our data suggests that brain regions classically associated with motor control, initiation, and regulation show the highest expression of GNAL , with Purkinje Cells of the cerebellum showing the highest expression of any neuron type examined. Subsequent conditional Gnal knockout in Purkinje cells led to markedly decreased intracellular cAMP levels and downstream cAMP-dependent enzyme activation. Our work provides a detailed characterization of Gnal expression throughout the brain and the biochemical consequences of loss of Gα olf signaling in vivo in neurons that highly express Gnal .

2.
Eur J Neurosci ; 59(7): 1585-1603, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38356120

RESUMO

Parkinson's disease (PD) is characterized by the accumulation of misfolded alpha-synuclein (α-syn) protein, forming intraneuronal Lewy body (LB) inclusions. The α-syn preformed fibril (PFF) model of PD recapitulates α-syn aggregation, progressive nigrostriatal degeneration and motor dysfunction; however, little is known about the time course of PFF-induced alterations in basal and evoked dopamine (DA). In vivo microdialysis is well suited for identifying small changes in neurotransmitter levels over extended periods. In the present study, adult male Fischer 344 rats received unilateral, intrastriatal injections of either α-syn PFFs or phosphate-buffered saline (PBS). At 4 or 8 months post-injection (p.i.), animals underwent in vivo microdialysis to evaluate basal extracellular striatal DA and metabolite levels, local KCl-evoked striatal DA release and the effects of systemic levodopa (l-DOPA). Post-mortem analysis demonstrated equivalent PFF-induced reductions in tyrosine hydroxylase (TH) immunoreactive nigral neurons (~50%) and striatal TH (~20%) at both time points. Compared with reduction in striatal TH, reduction in striatal dopamine transporter (DAT) was more pronounced and progressed between the 4- and 8-month p.i. intervals (36% âž” 46%). Significant PFF-induced deficits in basal and evoked striatal DA, as well as deficits in motor performance, were not observed until 8 months p.i. Responses to l-DOPA did not differ regardless of PBS or PFF treatment. These results suggest that basal and evoked striatal DA are maintained for several months following PFF injection, with loss of both associated with motor dysfunction. Our studies provide insight into the time course and magnitude of PFF-induced extracellular dopaminergic deficits in the striatum.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Ratos , Masculino , Animais , alfa-Sinucleína/metabolismo , Dopamina/metabolismo , Levodopa/farmacologia , Microdiálise , Substância Negra/metabolismo , Doença de Parkinson/metabolismo
3.
Biochem Soc Trans ; 51(2): 691-702, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37013974

RESUMO

Barbeau's seesaw hypothesis of dopamine-acetylcholine balance has predominated movement disorders literature for years. Both the simplicity of the explanation and the matching efficacy of anticholinergic treatment in movement disorders seem to support this hypothesis. However, evidence from translational and clinical studies in movement disorders indicates that many features of this simple balance are lost, broken, or absent from movement disorders models or in imaging studies of patients with these disorders. This review reappraises the dopamine-acetylcholine balance hypothesis in light of recent evidence and describes how the Gαi/o coupled muscarinic M4 receptor acts in opposition to dopamine signaling in the basal ganglia. We highlight how M4 signaling can ameliorate or exacerbate movement disorders symptoms and physiological correlates of these symptoms in specific disease states. Furthermore, we propose future directions for investigation of this mechanisms to fully understand the potential efficacy of M4 targeting therapeutics in movement disorders. Overall, initial evidence suggest that M4 is a promising pharmaceutical target to ameliorate motor symptoms of hypo- and hyper-dopaminergic disorders.


Assuntos
Acetilcolina , Transtornos dos Movimentos , Humanos , Receptor Muscarínico M4 , Dopamina , Colinérgicos
4.
Clin Hematol Int ; 5(2-3): 78-91, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36918485

RESUMO

Adult T-cell leukemia/lymphoma (ATLL) remains challenging to treat and has dismal outcome. Allogeneic stem-cell transplantation (allo-SCT) has promising results, but data remain scarce. In this single-center retrospective analysis of 100 patients with ATLL from north America (67 acute, 22 lymphomatous), 17 underwent allo-SCT and 5 autologous SCT (ASCT), with a median follow-up of 65 months. Post-transplant 3-years relapse incidence (RI) and non-relapse mortality (NRM) were 51% and 37%, respectively, and 3-year progression-free survival (PFS) and overall survival (OS) were 31% and 35%, respectively. ASCT 1-year RI was 80% compared to 30% in allo-SCT (p = 0.03). After adjusting for immortal-time bias, allo-SCT had significantly improved OS (HR = 0.4, p = 0.01). In exploratory multivariate analysis, patients achieving first complete response and Karnofsky score ≥ 90 had significantly better outcomes, as did Black patients, compared to Hispanics, who had worse outcome. In transplanted patients, 14 died within 2 years, 4 of which ASCT recipients. Our data are the largest ATLL transplant cohort presented to date outside of Japan and Europe. We show that allo-SCT, but not ASCT, is a valid option in select ATLL patients, and can induce long term survival, with 40% of patients alive after more than 5 years.

5.
Stem Cell Investig ; 8: 18, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631871

RESUMO

BACKGROUND: Adoptive immunotherapy using CD19-targeted Chimeric antigen receptor T cells (CAR-T) has revolutionized the treatment of relapsed/refractory diffuse large B-cell lymphoma (DLBCL). Data is limited on the propensity of infections and lymphohematopoietic reconstitution after Day 30 (D30) following CAR-T cell therapy. In this study, we evaluated the prevalence and nature of infectious complications in an expanded cohort of DLBCL patients treated with CD19 CAR-T therapy and its association with the dynamics of leukocyte subpopulation reconstitution post-CAR-T cell therapy. METHODS: We conducted a retrospective study including 19 patients who received axicabtagene ciloleucel and investigated associations between cytopenia and infectious complications after D30. RESULTS: Nineteen patients were included, consisting of 42% Hispanic, 32% Caucasian, 21% African-American, and 5% Asian subjects. Post-D30 of CAR-T infusion, 47% patients (n=9) developed an infection and 53% (n=10) remained infection-free. The most common infection type observed was viral (7 patients) followed by bacterial (5 patients) and fungal (3 patients). Of 25 total infectious events, 56% were grade 1 or 2 and 44% were grade 3 with 10 being viral in etiology. To determine the kinetics of lymphohematopoietic reconstitution and its association with infection risk, we evaluated the relationship between cytopenias and rates of infection after D30. Notably, compared to non-infection group, infection group had a higher median absolute lymphocyte count (ALC) (1,000/µL vs. 600/µL, P<0.05), a lower median absolute neutrophil count (ANC)/ALC ratio (1.6 vs. 3.1, P<0.05) and a lower median AMC/ALC at D30 (0.37 vs. 1.67, P<0.05). In addition, we observed that only 22% of patients had recovered ANC >1,500/µL in the infection group as opposed to 70% in the non-infection group at D90 (P<0.05). Fifty-eight percent of the patients (11/19) with relapsed refractory DLBCL achieved a complete response with a median follow-up of 233 days (7.7 months). CONCLUSIONS: Although CAR-T cell therapy is highly effective, infectious complications remain an important cause of morbidity and mortality. Low ANC/ALC and AMC/ALC ratios at D30 are potential novel predictors of infection and can be considered in future prophylactic strategies.

6.
Eur J Neurosci ; 53(8): 2835-2847, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33426708

RESUMO

Pedunculopontine nucleus (PPN) cholinergic neurons are implicated in freezing of gait in Parkinson's disease (PD) and motor stereotypy in normal animals, but the causal role of these neurons on specific gait parameters and treatment-induced dyskinesia remains speculative. Therefore, we examined whether selective cholinergic lesion of the rostral PPN affects PD motor and gait deficits, L-DOPA-induced dyskinesia and motor improvement, and DA-agonist-induced dyskinesia. Sprague-Dawley rats were assigned to one unilaterally lesioned group: Sham lesion, PPN cholinergic lesion with diphtheria urotensin II fusion toxin, medial forebrain bundle dopamine lesion with 6-hydroxydopamine, or dual acetylcholine and dopamine lesion. We used gait analysis and forepaw adjusting steps to examine PD gait and motor deficits. Forepaw adjusting steps were also used to assess motor improvement with L-DOPA treatment. The abnormal involuntary movements scale measured L-DOPA and dopamine D1- and D2-receptor agonist-induced dyskinesia. Lesions, verified via tyrosine hydroxylase and choline acetyltransferase immunohistochemistry reduced an average of 95% of nigral dopamine neurons and 80% of PPN cholinergic neurons, respectively. Rats receiving acetylcholine and dual lesion demonstrated enhanced freezing, and acetylcholine lesioned rats exhibited increased print area and stand index. Dopamine and dual lesion produced similar forepaw adjusting steps task on and off L-DOPA. Relative to DA lesioned rats, dual lesioned rats displayed reduced L-DOPA and DA agonist-induced dyskinesia at specific time points. Our results indicate that PPN cholinergic neurons affect gait parameters related to postural stability. Therefore, therapeutically targeting PPN cholinergic neurons could reduce intractable postural instability in PD without affecting motor benefits or side effects of L-DOPA treatment.


Assuntos
Discinesias , Transtornos Neurológicos da Marcha , Doença de Parkinson , Animais , Colinérgicos , Modelos Animais de Doenças , Marcha , Levodopa , Oxidopamina/toxicidade , Ratos , Ratos Sprague-Dawley
7.
Psychopharmacology (Berl) ; 237(1): 155-165, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31435690

RESUMO

In the majority of Parkinson's disease (PD) patients, long-term dopamine (DA) replacement therapy leads to dyskinesia characterized by abnormal involuntary movements (AIMs). There are various mechanisms of dyskinesia, such as the sensitization of striatal DA D1 receptors (D1R) and upregulation of DA D3 receptors (D3R). These receptors interact physically and functionally in D1R-bearing medium spiny neurons to synergistically drive dyskinesia. However, the cross-receptor-mediated effects due to D1R-D3R cooperativity are still poorly understood. In pursuit of this, we examined whether or not pharmacological D1R or D3R stimulation sensitizes the dyskinetic response to the appositional agonist, a process known as cross-sensitization. First, we established D1R-D3R behavioral synergy in a cohort of 6-OHDA-lesioned female adult Sprague-Dawley rats. Then, in a new cohort, we tested for cross-sensitization in a between-subject design. Five groups received a sub-chronic regimen of either saline, the D1R agonist SKF38393 (1.0 mg/kg), or the D3R agonist PD128907 (0.3 mg/kg). For the final injection, each group received an acute injection of the other agonist. AIMs were monitored following each injection. Sub-chronic administration of both SKF38393 and PD128907 induced the development of dyskinesia. More importantly, cross-agonism tests revealed reciprocal cross-sensitization; chronic treatment with either SKF38393 or PD128907 induced sensitization to a single administration of the other agonist. This reciprocity was not marked by changes to either D1R or D3R striatal mRNA expression. The current study provides key behavioral data demonstrating the role of D3R in dyskinesia and provides behavioral evidence of D1R and D3R functional interactions.


Assuntos
Corpo Estriado/metabolismo , Agonistas de Dopamina/farmacologia , Discinesia Induzida por Medicamentos/metabolismo , Doença de Parkinson Secundária/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D3/metabolismo , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Benzopiranos/farmacologia , Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Feminino , Oxazinas/farmacologia , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Ratos , Ratos Sprague-Dawley
8.
Psychooncology ; 28(9): 1887-1893, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31269306

RESUMO

OBJECTIVE: A common method of distress monitoring in cancer patients relies on static and retrospective data collected in-person at the time of a health care provider appointment. Relatively little work has examined the potential usefulness of mobile distress monitoring using cancer patients' smartphones. The current study deployed longitudinal distress monitoring using secure text messaging. METHODS: In an observational study, a total of 52 cancer patients receiving active cancer treatment (Mage  = 58, 62% female) received a text message once a week for 4 weeks. Text messages contained a secure link to complete online the Patient Health Questionnaire-4 (PHQ-4), a commonly used distress screener. RESULTS: Cancer patients completed a distress screener 75% of the time they received a text message. On average, it took less than a minute to complete each mobile distress screener. Geolocation data indicated that cancer patients completed distress screeners across a range of locations. Analyses of model fit of distress scores indicated significant heterogeneity in variability of distress scores over time and across cancer patients (AIC = 630.5). Quantitative feedback from cancer patients at the end of the study indicated high ease of use, ease of learning, and satisfaction of completing mobile distress screeners. CONCLUSIONS: These findings support the use of secure text messaging to monitor longitudinal, out of clinic, distress in cancer patients. Findings also highlight the importance of mobile-based approaches to distress screening in order to maximize opportunities to intervene.


Assuntos
Programas de Rastreamento/métodos , Neoplasias/psicologia , Angústia Psicológica , Envio de Mensagens de Texto , Estudos de Viabilidade , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Neoplasias/terapia , Aceitação pelo Paciente de Cuidados de Saúde
9.
Neuroscience ; 409: 180-194, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31029732

RESUMO

Standard treatment for Parkinson's disease (PD) is L-DOPA, but with chronic administration the majority of patients develop L-DOPA-induced dyskinesia (LID). Emerging evidence implicates the cholinergic system in PD and LID. Muscarinic acetylcholine receptors (mAChR) are known to modulate movement and of late have been implicated as possible targets for LID. Therefore the current study investigated the role of M1 and M4 mAChRs in LID, on motor performance following L-DOPA treatment, and sought to identify brain sites through which these receptors were acting. We first administered M1R-preferring antagonist trihexyphenidyl (0, 0.1, and 1.0 mg/kg, i.p.) or the M4R-preferring antagonist tropicamide (0, 10, and 30 mg/kg, i.p.) before L-DOPA, after which LID and motor performance were evaluated. Both compounds worsened and extended the time course of LID, while M1R blockade improved motor performance. We then evaluated the effects of tropicamide and trihexyphenidyl on dyskinesia induced by D1R agonist SKF81297 or D2R agonist quinpirole. Surprisingly, both M1R and M4R antagonists reduced D1R agonist-induced dyskinesia but not D2R agonist-induced dyskinesia, suggesting that mAChR blockade differentially affects MSN firing in the absence of postsynaptic DA. Finally, we evaluated effects of striatum- or PPN-targeted tropicamide microinfusion on LID and motor performance. Despite prior evidence, M4R blockade in either site alone did not affect the severity of LID via local striatal or PPN infusions. Taken together, these data suggest M4R as a promising therapeutic target for reducing LID using more selective compounds.


Assuntos
Discinesia Induzida por Medicamentos/tratamento farmacológico , Antagonistas Muscarínicos/uso terapêutico , Doença de Parkinson Secundária/tratamento farmacológico , Receptor Muscarínico M1/antagonistas & inibidores , Receptor Muscarínico M4/antagonistas & inibidores , Animais , Antiparkinsonianos/efeitos adversos , Antiparkinsonianos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Levodopa/efeitos adversos , Levodopa/uso terapêutico , Masculino , Antagonistas Muscarínicos/farmacologia , Oxidopamina , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Triexifenidil/farmacologia , Triexifenidil/uso terapêutico , Tropicamida/farmacologia , Tropicamida/uso terapêutico
10.
Acta Neuropathol Commun ; 7(1): 8, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30646956

RESUMO

Levodopa-induced dyskinesias (LID) are a prevalent side effect of chronic treatment with levodopa (L-DOPA) for the motor symptoms of Parkinson's disease (PD). It has long been hypothesized that serotonergic neurons of the dorsal raphe nucleus (DRN) are capable of L-DOPA uptake and dysregulated release of dopamine (DA), and that this "false neurotransmission" phenomenon is a main contributor to LID development. Indeed, many preclinical studies have demonstrated LID management with serotonin receptor agonist treatment, but unfortunately, promising preclinical data has not been translated in large-scale clinical trials. Importantly, while there is an abundance of convincing clinical and preclinical evidence supporting a role of maladaptive serotonergic neurotransmission in LID expression, there is no direct evidence that dysregulated DA release from serotonergic neurons impacts LID formation. In this study, we ectopically expressed the DA autoreceptor D2Rs (or GFP) in the DRN of 6-hydroxydopamine (6-OHDA) lesioned rats. No negative impact on the therapeutic efficacy of L-DOPA was seen with rAAV-D2Rs therapy. However, D2Rs treated animals, when subjected to a LID-inducing dose regimen of L-DOPA, remained completely resistant to LID, even at high doses. Moreover, the same subjects remained resistant to LID formation when treated with direct DA receptor agonists, suggesting D2Rs activity in the DRN blocked dyskinesogenic L-DOPA priming of striatal neurons. In vivo microdialysis confirmed that DA efflux in the striatum was reduced with rAAV-D2Rs treatment, providing explicit evidence that abnormal DA release from DRN neurons can affect LID. This is the first direct evidence of dopaminergic neurotransmission in DRN neurons and its modulation with rAAV-D2Rs gene therapy confirms the serotonin hypothesis in LID, demonstrating that regulation of serotonergic neurons achieved with a gene therapy approach offers a novel and potent antidyskinetic therapy.


Assuntos
Autorreceptores/metabolismo , Dopamina/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Levodopa/administração & dosagem , Receptores de Dopamina D2/metabolismo , Neurônios Serotoninérgicos/metabolismo , Transmissão Sináptica , Animais , Autorreceptores/genética , Núcleo Dorsal da Rafe/metabolismo , Discinesia Induzida por Medicamentos/prevenção & controle , Expressão Ectópica do Gene , Células HEK293 , Humanos , Masculino , Ratos Endogâmicos F344 , Receptores de Dopamina D2/genética
11.
Front Pharmacol ; 10: 1494, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32009944

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by hypokinetic motor features; however, patients also display non-motor symptoms like sleep disorders. The standard treatment for PD is dopamine replacement with L-DOPA; however, symptoms including gait deficits and sleep disorders are unresponsive to L-DOPA. Notably, these symptoms have been linked to aberrant activity in the pedunculopontine nucleus (PPN). Of late, clinical trials involving PPN deep brain stimulation (DBS) have been employed to alleviate gait deficits. Although preclinical evidence implicating PPN cholinergic neurons in gait dysfunction was initially promising, DBS trials fell short of expected outcomes. One reason for the failure of DBS may be that the PPN is a heterogenous nucleus that consists of GABAergic, cholinergic, and glutamatergic neurons that project to a diverse array of brain structures. Second, DBS trials may have been unsuccessful because PPN neurons are susceptible to mitochondrial dysfunction, Lewy body pathology, and degeneration in PD. Therefore, pharmaceutical or gene-therapy strategies targeting specific PPN neuronal populations or projections could better alleviate intractable PD symptoms. Unfortunately, how PPN neuronal populations and their respective projections influence PD motor and non-motor symptoms remains enigmatic. Herein, we discuss normal cellular and neuroanatomical features of the PPN, the differential susceptibility of PPN neurons to PD-related insults, and we give an overview of literature suggesting a role for PPN neurons in motor and sleep deficits in PD. Finally, we identify future approaches directed towards the PPN for the treatment of PD motor and sleep symptoms.

12.
Mov Disord ; 33(11): 1740-1749, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30485908

RESUMO

BACKGROUND: The serotonergic system is a well-established modulator of l-dopa-induced dyskinesia. To date, targeting serotonin transporters or serotonin receptor subtype 1A (5-HT1A ) reduces l-dopa-induced dyskinesia in animal models; however, these strategies have failed to translate clinically. Ideally, a compound acting at both known antidyskinetic sites could optimize serotonin-mediated approaches. Vilazodone is a selective serotonin reuptake inhibitor and a partial 5-HT1A agonist approved by the U.S. Food and Drug Administration, situating Vilazodone in a unique position to reduce l-dopa-induced dyskinesia without compromising l-dopa-mediated motor improvements. OBJECTIVES: The goal of the present study was to characterize Vilazodone's effects on l-dopa-induced behaviors, neurochemistry and gene expression in unilateral 6-hydroxydopamine-lesioned hemi-parkinsonian rats. METHODS: In experiments 1 and 2, l-dopa-naïve and l-dopa-primed animals were coadministered Vilazodone and l-dopa daily for 3 weeks to model subchronic use, and behavioral, neurochemical, and messenger RNA (mRNA) expression changes were measured. In experiment 3, dyskinetic behavior was assessed following 5-HT1A or serotonin receptor subtype 1B blockade prior to Vilazodone-l-dopa coadministration. RESULTS: Vilazodone significantly suppressed developing and established l-dopa-induced dyskinesia without compromising the promotor effects of l-dopa therapy. In the dopamine-depleted striatum, Vilazodone-l-dopa cotreatment increased dopamine content, suggesting a normalization of dopamine kinetics in dyskinetic brain, and reduced l-dopa-induced c-Fos and preprodynorphin mRNA overexpression, indicative of attenuated dopamine D1 receptor-mediated direct pathway overactivity. Only 5-HT1A antagonism partially attenuated Vilazodone's antidyskinetic efficacy, suggesting both serotonin transporter-dependent effects and 5-HT1A receptors in Vilazodone's actions. CONCLUSIONS: Our findings show Vilazodone has a serotonin-dependent effect on rodent l-dopa-induced dyskinesia and implicate the potential for repositioning Vilazodone against l-dopa-induced dyskinesia development and expression in Parkinson's disease patients. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/etiologia , Levodopa/efeitos adversos , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Cloridrato de Vilazodona/uso terapêutico , Animais , Modelos Animais de Doenças , Dinorfinas/genética , Dinorfinas/metabolismo , Encefalinas/genética , Encefalinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Piperazinas/farmacologia , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Piridinas/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Fatores de Tempo
13.
Neuropharmacology ; 138: 304-314, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29936243

RESUMO

Individually, D1 and D3 dopamine receptors (D1R and D3R, respectively) have been implicated in L-DOPA-induced dyskinesia (LID). Of late, direct D1R-D3R interactions have been linked to LID yet remain enigmatic. Therefore, the current research sought to characterize consequences of putative D1R-D3R interactions in dyskinesia expression and in LID-associated downstream cellular signaling. To do so, adult male Sprague-Dawley hemi-parkinsonian rats were given daily L-DOPA (6 mg/kg; s.c.) for 2 weeks to establish stable LID, as measured via the abnormal voluntary movements (AIMs) scale. Thereafter, rats underwent dose-response AIMs testing for the D1R agonist SKF38393 (0, 0.3, 1.0, 3.0 mg/kg) and the D3R agonist, PD128907 (0, 0.1, 0.3, 1.0 mg/kg). Each agonist dose-dependently induced dyskinesia, implicating individual receptor involvement. More importantly, when threshold doses were co-administered, rats displayed synergistic exacerbation of dyskinesia. Interestingly, this observation was not mirrored in general locomotor behaviors, highlighting a potentially dyskinesia-specific effect. To illuminate the mechanisms by which D1R-D3R co-stimulation led to in vivo synergy, levels of striatal phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) were quantified after administration of SKF38393 and/or PD128907. Combined agonist treatment synergistically drove striatal pERK1/2 expression. Together, these results support the presence of a functional, synergistic interaction between D1R and D3R that manifests both behaviorally and biochemically to drive dyskinesia in hemi-parkinsonian rats.


Assuntos
Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/metabolismo , Levodopa/efeitos adversos , Transtornos Parkinsonianos/tratamento farmacológico , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D3/metabolismo , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Antiparkinsonianos/farmacologia , Benzopiranos/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Agonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Lateralidade Funcional , Levodopa/farmacologia , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Oxazinas/farmacologia , Oxidopamina , Transtornos Parkinsonianos/metabolismo , Ratos Sprague-Dawley , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D3/agonistas
14.
Neurosci Biobehav Rev ; 92: 67-82, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29782883

RESUMO

Traditionally, dopamine (DA) and acetylcholine (ACh) striatal systems were considered antagonistic and imbalances or aberrant signaling between these neurotransmitter systems could be detrimental to basal ganglia activity and pursuant motor function, such as in Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID). Herein, we discuss the involvement of cholinergic interneurons (ChIs) in striatally-mediated movement in a healthy, parkinsonian, and dyskinetic state. ChIs integrate numerous neurotransmitter signals using intrinsic glutamate, serotonin, and DA receptors and convey the appropriate transmission onto nearby muscarinic and nicotinic ACh receptors to produce movement. In PD, severe DA depletion causes abnormal rises in ChI activity which promote striatal signaling to attenuate normal movement. When treating PD with L-DOPA, hyperkinetic side effects, or LID, develop due to increased striatal DA; however, the role of ChIs and ACh transmission, until recently has been unclear. Fortunately, new technology and pharmacological agents have facilitated understanding of ChI function and ACh signaling in the context of LID, thus offering new opportunities to modify existing and discover future therapeutic strategies in movement disorders.


Assuntos
Discinesia Induzida por Medicamentos/patologia , Interneurônios/patologia , Doença de Parkinson/patologia , Animais , Antiparkinsonianos/efeitos adversos , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Humanos , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Levodopa/efeitos adversos , Neurotransmissores/metabolismo , Doença de Parkinson/tratamento farmacológico
15.
Inorg Chem ; 56(13): 7519-7532, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28636344

RESUMO

Metallo prodrugs that take advantage of the inherent acidity surrounding cancer cells have yet to be developed. We report a new class of pH-activated metallo prodrugs (pHAMPs) that are activated by light- and pH-triggered ligand dissociation. These ruthenium complexes take advantage of a key characteristic of cancer cells and hypoxic solid tumors (acidity) that can be exploited to lessen the side effects of chemotherapy. Five ruthenium complexes of the type [(N,N)2Ru(PL)]2+ were synthesized, fully characterized, and tested for cytotoxicity in cell culture (1A: N,N = 2,2'-bipyridine (bipy) and PL, the photolabile ligand, = 6,6'-dihydroxybipyridine (6,6'-dhbp); 2A: N,N = 1,10-phenanthroline (phen) and PL = 6,6'-dhbp; 3A: N,N = 2,3-dihydro-[1,4]dioxino[2,3-f][1,10]phenanthroline (dop) and PL = 6,6'-dhbp; 4A: N,N = bipy and PL = 4,4'-dimethyl-6,6'-dihydroxybipyridine (dmdhbp); 5A: N,N = 1,10-phenanthroline (phen) and PL = 4,4'-dihydroxybipyridine (4,4'-dhbp). The thermodynamic acidity of these complexes was measured in terms of two pKa values for conversion from the acidic form (XA) to the basic form (XB) by removal of two protons. Single-crystal X-ray diffraction data is discussed for 2A, 2B, 3A, 4B, and 5A. All complexes except 5A showed measurable photodissociation with blue light (λ = 450 nm). For complexes 1A-4A and their deprotonated analogues (1B-4B), the protonated form (at pH 5) consistently gave faster rates of photodissociation and larger quantum yields for the photoproduct, [(N,N)2Ru(H2O)2]2+. This shows that low pH can lead to greater rates of photodissociation. Cytotoxicity studies with 1A-5A showed that complex 3A is the most cytotoxic complex of this series with IC50 values as low as 4 µM (with blue light) versus two breast cancer cell lines. Complex 3A is also selectively cytotoxic, with sevenfold higher toxicity toward cancerous versus normal breast cells. Phototoxicity indices with 3A were as high as 120, which shows that dark toxicity is avoided. The key difference between complex 3A and the other complexes tested appears to be higher uptake of the complex as measured by inductively coupled plasma mass spectrometry, and a more hydrophobic complex as compared to 1A, which may enhance uptake. These complexes demonstrate proof of concept for dual activation by both low pH and blue light, thus establishing that a pHAMP approach can be used for selective targeting of cancer cells.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Luz , Pró-Fármacos/farmacologia , Rutênio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/química , Teoria Quântica , Rutênio/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
16.
Exp Neurol ; 292: 168-178, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28342749

RESUMO

l-DOPA remains the benchmark treatment for Parkinson's disease (PD) motor symptoms, but chronic use leads to l-DOPA-induced dyskinesia (LID). The serotonin (5-HT) system has been established as a key modulator of LID and 5-HT1A receptors (5-HT1AR) stimulation has been shown to convey anti-dyskinetic effects. However, 5-HT1AR agonists often compromise clinical efficacy or display intrinsic side effects and their site(s) of actions remain debatable. Recently, highly selective G-protein biased 5-HT1AR agonists, F13714 and F15599, were shown to potently target 5-HT1A auto- or hetero-receptors, respectively. The current investigation sought to identify the signaling mechanisms and neuroanatomical substrates by which 5-HT1AR produce behavioral effects. In experiment 1, hemi-parkinsonian, l-DOPA-primed rats received systemic injections of vehicle, F13714 (0.01 or 0.02mg/kg), or F15599 (0.06 or 0.12mg/kg) 5min prior to l-DOPA (6mg/kg), after which LID, motor performance and 5-HT syndrome were rated. Both compounds significantly reduced LID, without affecting motor performance, however, acute administration of F13714 significantly induced 5-HT syndrome at anti-dyskinetic doses. In experiment 2, we elucidated the role of striatal 5-HT1AR in the effects of F13714 and F15599. Hemi-parkinsonian, l-DOPA-primed rats received bilateral intra-striatal microinjections of either F13714 (0, 2 or 10µg/side) or F15599 (0, 10 or 30µg/side) 5min prior to systemic l-DOPA (6mg/kg). Intra-striatal effects mimicked systemic effects, suggesting that striatal 5-HT1AR sub-populations play an important role in the anti-LID and pro-5-HT syndrome profiles of F13714 and F15599. Finally, in experiment 3, we examined the effects of F13714 and F15599 on D1 receptor (D1R) agonist-induced dyskinesia by administering either compound 5min prior to SKF 38393 (2mg/kg). While F13714 resulted in a mild delay in D1R-mediated dyskinesia, F15599 had no effect. Collectively these data suggest that the F-series compounds articulate their anti-LID effects through activation of a diverse set of striatal 5-HT1A hetero-receptor populations.


Assuntos
Antiparkinsonianos/farmacologia , Corpo Estriado/efeitos dos fármacos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/farmacologia , Neostriado/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Aminopiridinas/farmacologia , Animais , Corpo Estriado/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Neostriado/metabolismo , Piperidinas/farmacologia , Pirimidinas/farmacologia , Ratos Sprague-Dawley , Receptor 5-HT1A de Serotonina/metabolismo , Serotonina/metabolismo
17.
Organometallics ; 36(6): 1091-1106, 2017 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29540958

RESUMO

Hydrogenation reactions can be used to store energy in chemical bonds, and if these reactions are reversible, that energy can be released on demand. Some of the most effective transition metal catalysts for CO2 hydrogenation have featured pyridin-2-ol-based ligands (e.g., 6,6'-dihydroxybipyridine (6,6'-dhbp)) for both their proton-responsive features and for metal-ligand bifunctional catalysis. We aimed to compare bidentate pyridin-2-ol based ligands with a new scaffold featuring an N-heterocyclic carbene (NHC) bound to pyridin-2-ol. Toward this aim, we have synthesized a series of [Cp*Ir(NHC-pyOR)Cl]OTf complexes where R = t Bu (1), H (2), or Me (3). For comparison, we tested analogous bipy-derived iridium complexes as catalysts, specifically [Cp*Ir(6,6'-dxbp)Cl]OTf, where x = hydroxy (4Ir ) or methoxy (5Ir ); 4Ir was reported previously, but 5Ir is new. The analogous ruthenium complexes were also tested using [(η6-cymene)Ru(6,6'-dxbp)Cl]OTf, where x = hydroxy (4Ru ) or methoxy (5Ru ); 4Ru and 5Ru were both reported previously. All new complexes were fully characterized by spectroscopic and analytical methods and by single-crystal X-ray diffraction for 1, 2, 3, 5Ir , and for two [Ag(NHC-pyOR)2]OTf complexes 6 (R = t Bu) and 7 (R = Me). The aqueous catalytic studies of both CO2 hydrogenation and formic acid dehydrogenation were performed with catalysts 1-5. In general, NHC-pyOR complexes 1-3 were modest precatalysts for both reactions. NHC complexes 1-3 all underwent transformations under basic CO2 hydrogenation conditions, and for 3, we trapped a product of its transformation, 3SP , which we characterized crystallographically. For CO2 hydrogenation with base and dxbp-based catalysts, we observed that x = hydroxy (4Ir ) is 5-8 times more active than x = methoxy (5Ir ). Notably, ruthenium complex 4Ru showed 95% of the activity of 4Ir . For formic acid dehydrogenation, the trends were quite different with catalytic activity showing 4Ir ≫ 4Ru and 4Ir ≈ 5Ir . Secondary coordination sphere effects are important under basic hydrogenation conditions where the OH groups of 6,6'-dhbp are deprotonated and alkali metals can bind and help to activate CO2. Computational DFT studies have confirmed these trends and have been used to study the mechanisms of both CO2 hydrogenation and formic acid dehydrogenation.

18.
Dermatol Surg ; 40(3): 234-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24446695

RESUMO

BACKGROUND: The prevalence of surgical site infection (SSI) is low with Mohs micrographic surgery (MMS). It has not been determined whether sterile gloves (SG) or nonsterile gloves (NSG) should be used for resection and reconstruction during MMS. OBJECTIVE: To compare the SSI rate with the use of SG and NSG for MMS, including reconstruction, and to determine whether SG help prevent SSI. MATERIALS & METHODS: Data were collected and recorded for Mohs cases in which SG or NSG were used. Infected cases and SSI rate for SG and NSG were also recorded. Chi-square analysis was performed to compare SSI. RESULTS: There were 1,004 tumors in 942 patients in the SG group and 1,021 tumors in 941 patients in the NSG group. The prevalence of infection was 0.50% in the SG group and 0.49% in the NSG group (p = .82). The cost of gloves was $5.66 for one SG case and $1.63 for one NSG case. CONCLUSION: The prevalence of infection with SG and NSG was almost identical. The cost to use SG was 3.5 times as great as for NSG. The use of NSG for MMS and reconstruction is safe and cost effective.


Assuntos
Luvas Cirúrgicas , Cirurgia de Mohs , Neoplasias Cutâneas/cirurgia , Infecção da Ferida Cirúrgica/epidemiologia , Infecção da Ferida Cirúrgica/prevenção & controle , Idoso , Feminino , Luvas Cirúrgicas/economia , Humanos , Masculino , Prevalência , Fatores de Risco , Esterilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA