Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Lab Chip ; 24(11): 2944-2957, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38716822

RESUMO

In vitro display technologies such as yeast display have been instrumental in developing the selection of new antibodies, antibody fragments or nanobodies that bind to a specific target, with affinity towards the target being the main factor that influences selection outcome. However, the roles of mechanical forces are being increasingly recognized as a crucial factor in the regulation and activation of effector cell function. It would thus be of interest to isolate binders behaving optimally under the influence of mechanical forces. We developed a microfluidic assay allowing the selection of yeast displaying nanobodies through antigen-specific immobilization on a surface under controlled hydrodynamic flow. This approach enabled enrichment of model yeast mixtures using tunable antigen density and applied force. This new force-based selection method opens the possibility of selecting binders by relying on both their affinity and force resistance, with implications for the design of more efficient immunotherapeutics.


Assuntos
Antígenos , Saccharomyces cerevisiae , Anticorpos de Domínio Único , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , Anticorpos de Domínio Único/imunologia , Saccharomyces cerevisiae/metabolismo , Antígenos/imunologia , Antígenos/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação
2.
Oncoimmunology ; 13(1): 2338558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623463

RESUMO

T cell-based immunotherapies for solid tumors have not achieved the clinical success observed in hematological malignancies, partially due to the immunosuppressive effect promoted by the tumor microenvironment, where PD-L1 and TGF-ß play a pivotal role. However, durable responses to immune checkpoint inhibitors remain limited to a minority of patients, while TGF-ß inhibitors have not reached the market yet. Here, we describe a bispecific antibody for dual blockade of PD-L1 and TFG-ß, termed AxF (scFv)2, under the premise that combination with T cell redirecting strategies would improve clinical benefit. The AxF (scFv)2 antibody was well expressed in mammalian and yeast cells, bound both targets and inhibited dose-dependently the corresponding signaling pathways in luminescence-based cellular reporter systems. Moreover, combined treatment with trispecific T-cell engagers (TriTE) or CAR-T cells significantly boosted T cell activation status and cytotoxic response in breast, lung and colorectal (CRC) cancer models. Importantly, the combination of an EpCAMxCD3×EGFR TriTE with the AxF (scFv)2 delayed CRC tumor growth in vivo and significantly enhanced survival compared to monotherapy with the trispecific antibody. In summary, we demonstrated the feasibility of concomitant blockade of PD-L1 and TGF-ß by a single molecule, as well as its therapeutic potential in combination with different T cell redirecting agents to overcome tumor microenvironment-mediated immunosuppression.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Neoplasias Colorretais , Animais , Humanos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos/farmacologia , Antígeno B7-H1 , Neoplasias Colorretais/tratamento farmacológico , Linfócitos T , Fator de Crescimento Transformador beta , Microambiente Tumoral
3.
J Chem Inf Model ; 64(11): 4436-4461, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38423996

RESUMO

The world has witnessed a revolution in therapeutics with the development of biological medicines such as antibodies and antibody fragments, notably nanobodies. These nanobodies possess unique characteristics including high specificity and modulatory activity, making them promising candidates for therapeutic applications. Identifying their binding mode is essential for their development. Experimental structural techniques are effective to get such information, but they are expensive and time-consuming. Here, we propose a computational approach, aiming to identify the epitope of a nanobody that acts as an agonist and a positive allosteric modulator at the rat metabotropic glutamate receptor 5. We employed multiple structure modeling tools, including various artificial intelligence algorithms for epitope mapping. The computationally identified epitope was experimentally validated, confirming the success of our approach. Additional dynamics studies provided further insights on the modulatory activity of the nanobody. The employed methodologies and approaches initiate a discussion on the efficacy of diverse techniques for epitope mapping and later nanobody engineering.


Assuntos
Aprendizado Profundo , Epitopos , Receptor de Glutamato Metabotrópico 5 , Anticorpos de Domínio Único , Receptor de Glutamato Metabotrópico 5/química , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/imunologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Epitopos/imunologia , Epitopos/química , Animais , Ratos , Modelos Moleculares , Mapeamento de Epitopos/métodos , Simulação de Dinâmica Molecular , Conformação Proteica
4.
J Transl Med ; 22(1): 163, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365700

RESUMO

BACKGROUND: Soluble oligomeric forms of Tau protein have emerged as crucial players in the propagation of Tau pathology in Alzheimer's disease (AD). Our objective is to introduce a single-domain antibody (sdAb) named 2C5 as a novel radiotracer for the efficient detection and longitudinal monitoring of oligomeric Tau species in the human brain. METHODS: The development and production of 2C5 involved llama immunization with the largest human Tau isoform oligomers of different maturation states. Subsequently, 2C5 underwent comprehensive in vitro characterization for affinity and specificity via Enzyme-Linked Immunosorbent Assay and immunohistochemistry on human brain slices. Technetium-99m was employed to radiolabel 2C5, followed by its administration to healthy mice for biodistribution analysis. RESULTS: 2C5 exhibited robust binding affinity towards Tau oligomers (Kd = 6.280 nM ± 0.557) and to Tau fibers (Kd = 5.024 nM ± 0.453), with relatively weaker binding observed for native Tau protein (Kd = 1791 nM ± 8.714) and amyloid peptide (Kd > 10,000 nM). Remarkably, this SdAb facilitated immuno-histological labeling of pathological forms of Tau in neurons and neuritic plaques, yielding a high-contrast outcome in AD patients, closely mirroring the performance of reference antibodies AT8 and T22. Furthermore, 2C5 SdAb was successfully radiolabeled with 99mTc, preserving stability for up to 6 h post-radiolabeling (radiochemical purity > 93%). However, following intravenous injection into healthy mice, the predominant uptake occurred in kidneys, amounting to 115.32 ± 3.67, 97.70 ± 43.14 and 168.20 ± 34.52% of injected dose per gram (% ID/g) at 5, 10 and 45 min respectively. Conversely, brain uptake remained minimal at all measured time points, registering at 0.17 ± 0.03, 0.12 ± 0.07 and 0.02 ± 0.01% ID/g at 5, 10 and 45 min post-injection respectively. CONCLUSION: 2C5 demonstrates excellent affinity and specificity for pathological Tau oligomers, particularly in their early stages of oligomerization. However, the current limitation of insufficient blood-brain barrier penetration necessitates further modifications before considering its application in nuclear medicine imaging for humans.


Assuntos
Doença de Alzheimer , Anticorpos de Domínio Único , Animais , Humanos , Camundongos , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/patologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , Proteínas tau/química , Proteínas tau/imunologia , Distribuição Tecidual
5.
Int J Nanomedicine ; 19: 633-650, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38269255

RESUMO

Introduction: Most current anti-cancer therapies are associated with major side effects due to a lack of tumor specificity. Appropriate vectorization of drugs using engineered nanovectors is known to increase local concentration of therapeutic molecules in tumors while minimizing their side effects. Mesothelin (MSLN) is a well-known tumor associated antigen overexpressed in many malignancies, in particular in malignant pleural mesothelioma (MPM), and various MSLN-targeting anticancer therapies are currently evaluated in preclinical and clinical assays. In this study, we described, for the first time, the functionalization of fluorescent organic nanoassemblies (NA) with a nanobody (Nb) targeting MSLN for the specific targeting of MSLN expressing MPM cancer cells. Methods: Cell lines from different cancer origin expressing or not MSLN were used. An Nb directed against MSLN was coupled to fluorescent NA using click chemistry. A panel of endocytosis inhibitors was used to study targeted NA internalization by cells. Cancer cells were grown in 2D or 3D and under a flow to evaluate the specificity of the targeted NA. Binding and internalization of the targeted NA were studied using flow cytometry, confocal microscopy and transmission electron microscopy. Results: We show that the targeted NA specifically bind to MSLN-expressing tumor cells. Moreover, such functionalized NA appear to be internalized more rapidly and in significantly larger proportions compared to naked ones in MSLN+ MPM cells, thereby demonstrating both the functionality and interest of the active targeting strategy. We demonstrated that targeted NA are mainly internalized through a clathrin-independent/dynamin-dependent endocytosis pathway and are directed to lysosomes for degradation. A 3D cell culture model based on MSLN-expressing multicellular tumor spheroids reveals NA penetration in the first superficial layers. Conclusion: Altogether, these results open the path to novel anticancer strategies based on MSLN-activated internalization of NA incorporating drugs to promote specific accumulation of active treatments in tumors.


Assuntos
Bioensaio , Mesotelina , Linhagem Celular , Corantes , Endocitose
6.
Front Immunol ; 14: 1200652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388728

RESUMO

Introduction: Mesothelin (MSLN) is overexpressed in a wide variety of cancers with few therapeutic options and has recently emerged as an attractive target for cancer therapy, with a large number of approaches currently under preclinical and clinical investigation. In this respect, developing mesothelin specific tracers as molecular companion tools for predicting patient eligibility, monitoring then response to mesothelin-targeting therapies, and tracking the evolution of the disease or for real-time visualisation of tumours during surgery is of growing importance. Methods: We generated by phage display a nanobody (Nb S1) and used enzymatic approaches were used to site-directed conjugate Nb S1 with either ATTO 647N fluorochrome or NODAGA chelator for fluorescence and positron emission tomography imaging (PET) respectively. Results: We demonstrated that Nb S1 displays a high apparent affinity and specificity for human mesothelin and demonstrated that the binding, although located in the membrane distal domain of mesothelin, is not impeded by the presence of MUC16, the only known ligand of mesothelin, nor by the therapeutic antibody amatuximab. In vivo experiments showed that both ATTO 647N and [68Ga]Ga-NODAGA-S1 rapidly and specifically accumulated in mesothelin positive tumours compared to mesothelin negative tumours or irrelevant Nb with a high tumour/background ratio. The ex vivo biodistribution profile analysis also confirmed a significantly higher uptake of Nb S1 in MSLN-positive tumours than in MSLNlow tumours. Conclusion: We demonstrated for the first time the use of an anti-MSLN nanobody as PET radiotracer for same day imaging of MSLN+ tumours, targeting an epitope compatible with the monitoring of amatuximab-based therapies and current SS1-derived-drug conjugates.


Assuntos
Mesotelina , Neoplasias , Humanos , Distribuição Tecidual , Tomografia por Emissão de Pósitrons , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Anticorpos Bloqueadores
7.
Biophys J ; 122(12): 2518-2530, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37290437

RESUMO

Single-molecule data are of great significance in biology, chemistry, and medicine. However, new experimental tools to characterize, in a multiplexed manner, protein bond rupture under force are still needed. Acoustic force spectroscopy is an emerging manipulation technique which generates acoustic waves to apply force in parallel on multiple microbeads tethered to a surface. We here exploit this configuration in combination with the recently developed modular junctured-DNA scaffold that has been designed to study protein-protein interactions at the single-molecule level. By applying repetitive constant force steps on the FKBP12-rapamycin-FRB complex, we measure its unbinding kinetics under force at the single-bond level. Special efforts are made in analyzing the data to identify potential pitfalls. We propose a calibration method allowing in situ force determination during the course of the unbinding measurement. We compare our results with well-established techniques, such as magnetic tweezers, to ensure their accuracy. We also apply our strategy to study the force-dependent rupture of a single-domain antibody with its antigen. Overall, we get a good agreement with the published parameters that have been obtained at zero force and population level. Thus, our technique offers single-molecule precision for multiplexed measurements of interactions of biotechnological and medical interest.


Assuntos
Acústica , DNA , Proteínas , Análise Espectral , Análise Espectral/métodos , DNA/química , Proteínas/química , Mapas de Interação de Proteínas , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo , Sirolimo/química , Sirolimo/metabolismo , Proteína 1A de Ligação a Tacrolimo/química , Proteína 1A de Ligação a Tacrolimo/metabolismo
8.
Med ; 4(2): 75-91, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36773599

RESUMO

Pancreatic cancer is currently the third leading cause of cancer death in the United States. The clinical hallmarks of this disease include abdominal pain that radiates to the back, the presence of a hypoenhancing intrapancreatic lesion on imaging, and widespread liver metastases. Technologies such as tissue clearing and three-dimensional (3D) reconstruction of digitized serially sectioned hematoxylin and eosin-stained slides can be used to visualize large (up to 2- to 3-centimeter cube) tissues at cellular resolution. When applied to human pancreatic cancers, these 3D visualization techniques have provided novel insights into the basis of a number of the clinical characteristics of this disease. Here, we describe the clinical features of pancreatic cancer, review techniques for clearing and the 3D reconstruction of digitized microscope slides, and provide examples that illustrate how 3D visualization of human pancreatic cancer at the microscopic level has revealed features not apparent in 2D microscopy and, in so doing, has closed the gap between bench and bedside. Compared with animal models and 2D microscopy, studies of human tissues in 3D can reveal the difference between what can happen and what does happen in human cancers.


Assuntos
Imageamento Tridimensional , Neoplasias Pancreáticas , Animais , Humanos , Imageamento Tridimensional/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Microscopia , Técnicas Histológicas
9.
Nat Chem Biol ; 18(8): 894-903, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35681029

RESUMO

Membrane proteins, including ion channels, receptors and transporters, are often composed of multiple subunits and can form large complexes. Their specific composition in native tissues is difficult to determine and remains largely unknown. In this study, we developed a method for determining the subunit composition of endogenous cell surface protein complexes from isolated native tissues. Our method relies on nanobody-based sensors, which enable proximity detection between subunits in time-resolved Förster resonance energy transfer (FRET) measurements. Additionally, given conformation-specific nanobodies, the activation of these complexes can be recorded in native brain tissue. Applied to the metabotropic glutamate receptors in different brain regions, this approach revealed the clear existence of functional metabotropic glutamate (mGlu)2-mGlu4 heterodimers in addition to mGlu2 and mGlu4 homodimers. Strikingly, the mGlu4 subunits appear to be mainly heterodimers in the brain. Overall, these versatile biosensors can determine the presence and activity of endogenous membrane proteins in native tissues with high fidelity and convenience.


Assuntos
Ácido Glutâmico , Receptores de Glutamato Metabotrópico , Encéfalo/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Receptores de Glutamato Metabotrópico/metabolismo
10.
Oncoimmunology ; 11(1): 2034355, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154908

RESUMO

Retargeting of T lymphocytes toward cancer cells by bispecific antibodies has demonstrated its therapeutic potential, with one such antibody approved for the treatment of acute lymphoblastic leukemia (blinatumomab) and several other in clinical trials. However, improvement of their efficacy and selectivity for solid tumors is still required. Here, we describe a novel tandem T-cell recruiting trispecific antibody for the treatment of colorectal cancer (CRC). This construct, termed trispecific T-cell engager (TriTE), consists of a CD3-specific single-chain Fv (scFv) flanked by anti-epidermal growth factor receptor (EGFR) and anti-epithelial cell adhesion molecule (EpCAM) single-domain VHH antibodies. The TriTE was well expressed in mammalian and yeast cells, bound the cognate antigens of the three parental antibodies, and enabled the specific cytolysis of EGFR- and/or EpCAM-expressing cancer cells, without inducing T cell activation and cytoxicity against double-negative (EGFR-EpCAM-) cancer cells. Bivalent bispecific targeting of double-positive HCT116 cells by TriTE improved in vitro potency up to 100-fold compared to single-positive cells and significantly prolonged survival in vivo. In addition, it was less efficient at killing single-positive target cells than the corresponding bispecific controls, leading to potentially enhanced tumor specificity. Moreover, dual targeting of two tumor-associated antigens may contribute toward preventing the tumor escape by antigen loss caused by selective pressures from conventional single-targeting T-cell engagers, and may help to overcome antigenic heterogeneity.


Assuntos
Neoplasias Colorretais , Linfócitos T , Animais , Neoplasias Colorretais/tratamento farmacológico , Molécula de Adesão da Célula Epitelial , Receptores ErbB/metabolismo , Ativação Linfocitária , Mamíferos/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385321

RESUMO

There is growing interest in developing biologics due to their high target selectivity. The G protein-coupled homo- and heterodimeric metabotropic glutamate (mGlu) receptors regulate many synapses and are promising targets for the treatment of numerous brain diseases. Although subtype-selective allosteric small molecules have been reported, their effects on the recently discovered heterodimeric receptors are often not known. Here, we describe a nanobody that specifically and fully activates homodimeric human mGlu4 receptors. Molecular modeling and mutagenesis studies revealed that the nanobody acts by stabilizing the closed active state of the glutamate binding domain by interacting with both lobes. In contrast, this nanobody does not activate the heterodimeric mGlu2-4 but acts as a pure positive allosteric modulator. These data further reveal how an antibody can fully activate a class C receptor and bring further evidence that nanobodies represent an alternative way to specifically control mGlu receptor subtypes.


Assuntos
Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Anticorpos de Domínio Único , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Biológicos , Mutação , Ligação Proteica , Conformação Proteica , Receptores de Glutamato Metabotrópico/genética
12.
Methods Mol Biol ; 2350: 105-123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34331282

RESUMO

Early detection of malignant tumors, micrometastases, and disseminated tumor cells is one of the effective way of fighting cancer. Among the many existing imaging methods like computed tomography (CT), ultrasound (US), magnetic resonance imaging (MRI), positron emission tomography (PET), and single-photon emission computed tomography (SPECT), optical imaging with fluorescent probes is one of the most promising alternatives because it is fast, inexpensive, safe, sensitive, and specific. However, traditional fluorescent probes, based on organic fluorescent dyes, suffer from the low signal-to-noise ratio. Furthermore, conventional organic fluorescent dyes are unsuitable for deep tissue imaging because of the strong visible light absorption by biological tissues. The use of fluorescent semiconductor nanocrystals, or quantum dots (QDs), may overcome this limitation due to their large multiphoton cross section, which ensures efficient imaging of thick tissue sections inaccessible with conventional fluorescent probes. Moreover, the lower photobleaching and higher brightness of fluorescence signals from QDs ensures a much better discrimination of positive signals from the background. The use of fluorescent nanoprobes based on QDs conjugated to uniformly oriented high-affinity single-domain antibodies (sdAbs) may significantly increase the sensitivity and specificity due to better recognition of analytes and deeper penetration into tissues due to small size of such nanoprobes.Here, we describe a protocol for the fabrication of nanoprobes based on sdAbs and QDs, preparation of experimental xenograft mouse models for quality control, and multiphoton imaging of deep-tissue solid tumors, micrometastases, and disseminated tumor cells.


Assuntos
Imunofluorescência/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Pontos Quânticos , Anticorpos de Domínio Único , Linhagem Celular Tumoral , Imunofluorescência/normas , Humanos , Imunoconjugados/química , Imuno-Histoquímica/métodos , Sondas Moleculares , Imagem Multimodal/métodos , Nanopartículas , Micrometástase de Neoplasia , Imagem Óptica/métodos
13.
Front Pharmacol ; 11: 686, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528281

RESUMO

Antibody-based therapies hold promise for a safe and efficient treatment of cancer. The identification of target tumor cells through a specific antigen enriched on their surface and the subsequent delivery of the therapeutic agent only to those cells requires, besides the efficacy of the therapeutic agent itself, the identification of an antigen enriched on the surface of tumor cells, the generation of high affinity antibodies against that antigen. We have generated single-domain antibodies (nanobodies) against the voltage-gated potassium channel Kv10.1, which outside of the brain is detectable almost exclusively in tumor cells. The nanobody with highest affinity was fused to an improved form of the tumor necrosis factor-related apoptosis inducing ligand TRAIL, to target this cytokine to the surface of tumor cells. The resulting construct, VHH-D9-scTRAIL, shows rapid and strong apoptosis induction in different tumor models in cell culture. The construct combines two sources of specificity, the expression of the antigen restricted to tumor cells and the tumor selectivity of TRAIL. Such specificity combined with the high affinity obtained through nanobodies make the novel agent a promising concept for cancer therapy.

14.
Antibodies (Basel) ; 9(1)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155903

RESUMO

Since their first description in 1993 [1], single-domain antibody fragments derived from heavy-chain-only antibodies of camelids have received increasing attention as highly versatile binding molecules in the fields of biotechnology and medicine [...].

15.
Oncoimmunology ; 10(1): 1854529, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33457075

RESUMO

The natural killer group 2 member D (NKG2D) receptor is a C-type lectin-like activating receptor mainly expressed by cytotoxic immune cells including NK, CD8+ T, γδ T and NKT cells and in some pathological conditions by a subset of CD4+ T cells. It binds a variety of ligands (NKG2DL) whose expressions is finely regulated by stress-related conditions. The NKG2DL/NKG2D axis plays a central and complex role in the regulation of immune responses against diverse cellular threats such as oncogene-mediated transformations or infections. We generated a panel of seven highly specific anti-human NKG2D single-domain antibodies targeting various epitopes. These single-domain antibodies were integrated into bivalent and bispecific antibodies using a versatile plug-and-play Fab-like format. Depending on the context, these Fab-like antibodies exhibited activating or inhibitory effects on the immune response mediated by the NKG2DL/NKG2D axis. In solution, the bivalent anti-NKG2D antibodies that compete with NKG2DL potently blocked the activation of NK cells seeded on immobilized MICA, thus constituting antagonizing candidates. Bispecific anti-NKG2DxHER2 antibodies that concomitantly engage HER2 on tumor cells and NKG2D on NK cells elicited cytotoxicity of unstimulated NK in a tumor-specific manner, regardless of their apparent affinities and epitopes. Importantly, the bispecific antibodies that do not compete with ligands binding retained their full cytotoxic activity in the presence of ligands, a valuable property to circumvent immunosuppressive effects induced by soluble ligands in the microenvironment.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Humanos , Imunidade , Células Matadoras Naturais , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Microambiente Tumoral
16.
Antibodies (Basel) ; 8(1)2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31544819

RESUMO

In the last decade, cancer immunotherapies have produced impressive therapeutic results. However, the potency of immunotherapy is tightly linked to immune cell infiltration within the tumor and varies from patient to patient. Thus, it is becoming increasingly important to monitor and modulate the tumor immune infiltrate for an efficient diagnosis and therapy. Various bispecific approaches are being developed to favor immune cell infiltration through specific tumor targeting. The discovery of antibodies devoid of light chains in camelids has spurred the development of single domain antibodies (also called VHH or nanobody), allowing for an increased diversity of multispecific and/or multivalent formats of relatively small sizes endowed with high tissue penetration. The small size of nanobodies is also an asset leading to high contrasts for non-invasive imaging. The approval of the first therapeutic nanobody directed against the von Willebrand factor for the treatment of acquired thrombotic thrombocypenic purpura (Caplacizumab, Ablynx), is expected to bolster the rise of these innovative molecules. In this review, we discuss the latest advances in the development of nanobodies and nanobody-derived molecules for use in cancer immunotherapy and immunoimaging.

17.
Front Immunol ; 10: 1593, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354732

RESUMO

Triple negative breast cancers (TNBC) remain a major medical challenge due to poor prognosis and limited treatment options. Mesothelin is a glycosyl-phosphatidyl inositol-linked membrane protein with restricted normal expression and high level expression in a large proportion of TNBC, thus qualifying as an attractive target. Its overexpression in breast tumors has been recently correlated with a decreased disease-free survival and an increase of distant metastases. The objective of the study was to investigate the relevance of a bispecific antibody-based immunotherapy approach through mesothelin targeting and CD16 engagement using a Fab-like bispecific format (MesobsFab). Using two TNBC cell lines with different level of surface mesothelin and epithelial/mesenchymal phenotypes, we showed that, in vitro, MesobsFab promotes the recruitment and penetration of NK cells into tumor spheroids, induces potent dose-dependent cell-mediated cytotoxicity of mesothelin-positive tumor cells, cytokine secretion, and decreases cell invasiveness. MesobsFab was able to induce cytotoxicity in resting human peripheral blood mononuclear cells (PBMC), mainly through its NK cells-mediated antibody dependent cell cytotoxicity (ADCC) activity. In vivo, the anti-tumor effect of MesobsFab depends upon a threshold of MSLN density on target cells. Collectively our data support mesothelin as a relevant therapeutic target for the subset of TNBC that overexpresses mesothelin characterized by a low overall and disease-free survival as well as the potential of MesobsFab as antibody-based immunotherapeutics.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Neoplasias da Mama/terapia , Proteínas Ligadas por GPI/imunologia , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Receptores de IgG/imunologia , Neoplasias de Mama Triplo Negativas/terapia , Citotoxicidade Celular Dependente de Anticorpos , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Epitopos , Feminino , Humanos , Mesotelina , Neoplasias de Mama Triplo Negativas/imunologia
18.
Biophys J ; 116(8): 1516-1526, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30979550

RESUMO

Antibodies are key tools in biomedical research and medicine. Their binding properties are classically measured in solution and characterized by an affinity. However, in physiological conditions, antibodies can bridge an immune effector cell and an antigen-presenting cell, implying that mechanical forces may apply to the bonds. For example, in antibody-dependent cell cytotoxicity-a major mode of action of therapeutic monoclonal antibodies-the Fab domains bind the antigens on the target cell, whereas the Fc domain binds to the activating receptor CD16 (also known as FcgRIII) of an immune effector cell, in a quasi-bidimensional environment (2D). Therefore, there is a strong need to investigate antigen/antibody binding under force (2D) to better understand and predict antibody activity in vivo. We used two anti-CD16 nanobodies targeting two different epitopes and laminar flow chamber assay to measure the association and dissociation of single bonds formed between microsphere-bound CD16 antigens and surface-bound anti-CD16 nanobodies (or single-domain antibodies), simulating 2D encounters. The two nanobodies exhibit similar 2D association kinetics, characterized by a strong dependence on the molecular encounter duration. However, their 2D dissociation kinetics strongly differ as a function of applied force: one exhibits a slip bond behavior in which off rate increases with force, and the other exhibits a catch-bond behavior in which off rate decreases with force. This is the first time, to our knowledge, that catch-bond behavior was reported for antigen-antibody bond. Quantification of natural killer cells spreading on surfaces coated with the nanobodies provides a comparison between 2D and three-dimensional adhesion in a cellular context, supporting the hypothesis of natural killer cell mechanosensitivity. Our results may also have strong implications for the design of efficient bispecific antibodies for therapeutic applications.


Assuntos
Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Fenômenos Mecânicos , Anticorpos de Domínio Único/imunologia , Fenômenos Biomecânicos , Adesão Celular , Linhagem Celular , Humanos
19.
Med Sci (Paris) ; 35(12): 1072-1082, 2019 Dec.
Artigo em Francês | MEDLINE | ID: mdl-31903920

RESUMO

Over the past ten years, an increased knowledge of tumor biology and immunology allowed the design and development of novel therapeutic antibody and protein scaffold formats, where bispecific antibodies (Abs) play a major role. The latter molecules can (1) bring novel pharmacological properties through the co-engagement of two targets, (2) increase the safety profile as compared to a combination of two antibodies thanks to a targeted relocation to the tumor and (3) reduce development and manufacturing costs associated with single drug product. This review analyzes the different bispecific antibodies and scaffolds described in the field of immuno-oncology, their structure and major pharmacological and physico-chemical properties.


TITLE: Les anticorps et scaffold bispécifiques, des médicaments innovants en oncologie impliquant le ciblage des cellules immunitaires. ABSTRACT: Une connaissance approfondie de la biologie et de l'immunologie des tumeurs, mais aussi la conception de formats innovants d'anticorps et d'autres charpentes (ou scaffolds) protéiques ont permis de générer une véritable explosion de nouvelles molécules à visée thérapeutique au cours de ces 10 dernières années. Dans ce cadre, les anticorps bispécifiques (Abs) tiennent une place de choix. Ils permettent en effet, (1) d'apporter des propriétés biologiques et pharmacologiques nouvelles qui dépendent de l'engagement simultané des deux cibles, (2) d'améliorer le profil de sécurité par rapport à une combinaison d'anticorps en favorisant sa localisation tumorale en oncologie, et également (3) de combiner en une seule molécule les activités de deux anticorps conventionnels, réduisant ainsi les coûts de développement clinique et de fabrication. Cet article de revue a pour objectif d'analyser les différentes molécules bispécifiques décrites à ce jour dans le domaine de l'immuno-oncologie, et de présenter leurs différents formats et principales propriétés.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Sistema Imunitário/efeitos dos fármacos , Imunoterapia/métodos , Terapia de Alvo Molecular/métodos , Antígenos de Neoplasias , Humanos , Sistema Imunitário/fisiologia , Imunoterapia/tendências , Terapia de Alvo Molecular/tendências , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Engenharia de Proteínas/métodos , Engenharia de Proteínas/tendências , Terapias em Estudo/métodos , Terapias em Estudo/tendências
20.
Methods Mol Biol ; 1827: 165-178, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30196497

RESUMO

The isolation of antibody fragments targeting proteins implicated in cancers and other diseases remains a crucial issue on targeted therapy or diagnostic tool development. In many case, the protein of interest, or a relevant portion of this protein such as its extracellular domain, is available as purified protein. In such cases, phage display on purified antigen is an easy and fast way to select antibody fragment able to efficiently bind this antigen. However the output of phage selection can vary significantly depending on the way to immobilize the purified antigen during selection. The following protocols describe the selection of phage antibody on purified antigen adsorbed on plastic, i.e., panning, or a selection in solution, using a biotinylated antigen as well as the corresponding screening produces, and give hints on the advantage and drawbacks of each approach.


Assuntos
Antígenos/isolamento & purificação , Técnicas de Visualização da Superfície Celular/métodos , Anticorpos/metabolismo , Bacteriófagos/metabolismo , Biotinilação , Precipitação Química , Ensaio de Imunoadsorção Enzimática , Biblioteca de Peptídeos , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA