Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Protein Eng Des Sel ; 22(7): 431-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19515729

RESUMO

The half-a-tetratricopeptide (HAT) repeat motif is of interest because it is found exclusively in proteins that are involved in RNA metabolism. Little is known about structure-function relationships in this class of repeat motif. Here, we present the results of a combined bioinformatics, modeling and mutagenesis study of the HAT domain of Utp6. We have derived a new HAT consensus, delineated its structure-defining residues and, by homology modeling, have placed these residues in a structural context. By considering only HAT motifs from Utp6 proteins, we identified residues that are shared by, and unique to, only this subset of HAT motifs, suggesting a key functional role. Employing both random and directed mutagenesis of the HAT domain in yeast Utp6, we have identified residues whose mutation results in loss of function. By examining these residues in the context of the homology model, we have delineated those that act by perturbing structure and those that more likely have a direct effect on function. Importantly, the residues we predict to have a direct effect on function map together on the tertiary structure, thus defining a potential functional interaction surface.


Assuntos
Motivos de Aminoácidos/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Biologia Computacional , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína/genética , Alinhamento de Sequência
2.
Mol Cell Biol ; 28(21): 6547-56, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18725399

RESUMO

The small subunit (SSU) processome is a ribosome biogenesis intermediate that assembles from its subcomplexes onto the pre-18S rRNA with yet unknown order and structure. Here, we investigate the architecture of the UtpB subcomplex of the SSU processome, focusing on the interaction between the half-a-tetratricopeptide repeat (HAT) domain of Utp6 and a specific peptide in Utp21. We present a comprehensive map of the interactions within the UtpB subcomplex and further show that the N-terminal domain of Utp6 interacts with Utp18 while the HAT domain interacts with Utp21. Using a panel of point and deletion mutants of Utp6, we show that an intact HAT domain is essential for efficient pre-rRNA processing and cell growth. Further investigation of the Utp6-Utp21 interaction using both genetic and biophysical methods shows that the HAT domain binds a specific peptide ligand in Utp21, the first example of a HAT domain peptide ligand, with a dissociation constant of 10 muM.


Assuntos
Proteínas Nucleares/metabolismo , Peptídeos/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Sequências Repetitivas de Aminoácidos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Ligantes , Dados de Sequência Molecular , Mutação/genética , Proteínas Nucleares/química , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química
3.
Nucleic Acids Res ; 34(10): 3189-99, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16772403

RESUMO

While 18 putative RNA helicases are involved in ribosome biogenesis in Saccharomyces cerevisiae, their enzymatic properties have remained largely biochemically uncharacterized. To better understand their function, we examined the enzymatic properties of Dpb8, a DExD/H box protein previously shown to be required for the synthesis of the 18S rRNA. As expected for an RNA helicase, we demonstrate that recombinant Dbp8 has ATPase activity in vitro, and that this activity is dependent on an intact ATPase domain. Strikingly, we identify Esf2, a nucleolar putative RNA binding protein, as a binding partner for Dbp8, and show that it enhances Dbp8 ATPase activity by decreasing the K(M) for ATP. Thus, we have uncovered Esf2 as the first example of a protein co-factor that has a stimulatory effect on a nucleolar RNA helicase. We show that Esf2 can bind to pre-rRNAs and speculate that it may function to bring Dbp8 to the pre-rRNA, thereby both regulating its enzymatic activity and guiding Dbp8 to its site of action.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Nucleares/metabolismo , RNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , RNA Helicases DEAD-box , Hidrólise , Proteínas Nucleares/química , Estrutura Terciária de Proteína , RNA Helicases/química , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Proteínas de Saccharomyces cerevisiae/química
4.
RNA ; 12(6): 1092-103, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16601205

RESUMO

Archaeal box C/D sRNAs guide the methylation of specific nucleotides in archaeal ribosomal and tRNAs. Three Methanocaldococcus jannaschii sRNP core proteins (ribosomal protein L7, Nop56/58, and fibrillarin) bind the box C/D sRNAs to assemble the sRNP complex, and these core proteins are essential for nucleotide methylation. A distinguishing feature of the Nop56/58 core protein is the coiled-coil domain, established by alpha-helices 4 and 5, that facilitates Nop56/58 self-dimerization in vitro. The function of this coiled-coil domain has been assessed for box C/D sRNP assembly, sRNP structure, and sRNP-guided nucleotide methylation by mutating or deleting this protein domain. Protein pull-down experiments demonstrated that Nop56/58 self-dimerization and Nop56/58 dimerization with the core protein fibrillarin are mutually exclusive protein:protein interactions. Disruption of Nop56/58 homodimerization by alteration of specific amino acids or deletion of the entire coiled-coil domain had no obvious effect upon core protein binding and sRNP assembly. Site-directed mutation of the Nop56/58 homodimerization domain also had no apparent effect upon either box C/D RNP- or C'/D' RNP-guided nucleotide modification. However, deletion of this domain disrupted guided methylation from both RNP complexes. Nuclease probing of the sRNP assembled with Nop56/58 proteins mutated in the coiled-coil domain indicated that while functional complexes were assembled, box C/D and C'/D' RNPs were altered in structure. Collectively, these experiments revealed that the self-dimerization of the Nop56/58 coiled-coil domain is not required for assembly of a functional sRNP, but the coiled-coil domain is important for the establishment of wild-type box C/D and C'/D' RNP structure essential for nucleotide methylation.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , RNA Arqueal/metabolismo , RNA Nucleolar Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cristalografia por Raios X , Dimerização , Metilação , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Nucleotídeos/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , RNA Arqueal/química , RNA Arqueal/genética , RNA Nucleolar Pequeno/química , Ribonucleoproteínas Nucleares Pequenas/genética , Alinhamento de Sequência
5.
Mol Cell ; 16(6): 943-54, 2004 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-15610737

RESUMO

Recent studies have revealed multiple dynamic complexes that are precursors to eukaryotic ribosomes. EM visualization of nascent rRNA transcripts provides in vivo temporal and structural context for these events. In exponentially growing S. cerevisiae, pre-18S rRNA is dramatically compacted into a large particle (SSU processome) within seconds of completion of its transcription and is released cotranscriptionally by cleavage in ITS1. After cleavage, a new terminal knob is formed on the nascent large subunit rRNA, compacting it progressively in a 5'-3' direction. Depletion of individual components shows that cotranscriptional SSU processome formation is a sensitive indicator of the occurrence or timing of the early A0-A2 cleavages and depends on factors not isolated in preribosome complexes, as well as on favorable growth conditions. The results show that the approximately 40 components of the SSU processome/90S preribosome can complete their tasks within approximately 85 s in optimal conditions.


Assuntos
Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , RNA Ribossômico 18S/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopia Eletrônica , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA