Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Annu Rev Phys Chem ; 74: 123-144, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36696586

RESUMO

The photoacid dynamics of fluorescent proteins include both electronic excited- and ground-state mechanisms of proton transfer. The associated characteristic timescales of these reactions range over many orders of magnitude, and the tunneling, barrier crossing, and relevant thermodynamics have in certain cases been linked to coherent nuclear motion. We review the literature and summarize the experiments and theory that demonstrate proton tunneling in the electronic ground state of the green fluorescent protein (GFP). We also discuss the excited-state proton-transfer reaction of GFP that takes place on the picosecond timescale. Although this reaction has been investigated using several vibrational spectroscopic methods, the interpretation remains unsettled. We discuss recent advances as well as remaining questions, in particular those related to the vibrational mode couplings that involve low-frequency modulations of chromophore vibrations on the timescale of proton transfer.


Assuntos
Prótons , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33883276

RESUMO

Many small proteins move across cellular compartments through narrow pores. In order to thread a protein through a constriction, free energy must be overcome to either deform or completely unfold the protein. In principle, the diameter of the pore, along with the effective driving force for unfolding the protein, as well as its barrier to translocation, should be critical factors that govern whether the process proceeds via squeezing, unfolding/threading, or both. To probe this for a well-established protein system, we studied the electric-field-driven translocation behavior of cytochrome c (cyt c) through ultrathin silicon nitride (SiNx) solid-state nanopores of diameters ranging from 1.5 to 5.5 nm. For a 2.5-nm-diameter pore, we find that, in a threshold electric-field regime of ∼30 to 100 MV/m, cyt c is able to squeeze through the pore. As electric fields inside the pore are increased, the unfolded state of cyt c is thermodynamically stabilized, facilitating its translocation. In contrast, for 1.5- and 2.0-nm-diameter pores, translocation occurs only by threading of the fully unfolded protein after it transitions through a higher energy unfolding intermediate state at the mouth of the pore. The relative energies between the metastable, intermediate, and unfolded protein states are extracted using a simple thermodynamic model that is dictated by the relatively slow (∼ms) protein translocation times for passing through the nanopore. These experiments map the various modes of protein translocation through a constriction, which opens avenues for exploring protein folding structures, internal contacts, and electric-field-induced deformability.


Assuntos
Citocromos c/fisiologia , Transporte Proteico/fisiologia , Constrição , Citocromos c/química , Eletricidade , Modelos Moleculares , Nanoporos , Dobramento de Proteína , Desdobramento de Proteína , Compostos de Silício/química , Termodinâmica
3.
ACS Appl Mater Interfaces ; 11(17): 15913-15921, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30964277

RESUMO

Two-dimensional (2D) heterostructures are more than a sum of the parent 2D materials, but are also a product of the interlayer coupling, which can induce new properties. In this paper, we present a method to tune the interlayer coupling in Bi2Se3/MoS2 2D heterostructures by regulating the oxygen presence in the atmosphere, while applying laser or thermal energy. Our data suggest that the interlayer coupling is tuned through the diffusive intercalation and deintercalation of oxygen molecules. When one layer of Bi2Se3 is grown on monolayer MoS2, an influential interlayer coupling is formed, which quenches the signature photoluminescence (PL) peaks. However, thermally treating in the presence of oxygen disrupts the interlayer coupling, facilitating the emergence of the MoS2 PL peak. Our density functional theory calculations predict that intercalated oxygen increases the interlayer separation ∼17%, disrupting the interlayer coupling and inducing the layers to behave more electronically independent. The interlayer coupling can then be restored by thermally treating in N2 or Ar, where the peaks will requench. Hence, this is an interesting oxygen-induced switching between "non-radiative" and "radiative" exciton recombination. This switching can also be accomplished locally, controllably, and reversibly using a low-power focused laser, while changing the environment from pure N2 to air. This allows for the interlayer coupling to be precisely manipulated with submicron spatial resolution, facilitating site-programmable 2D light-emitting pixels whose emission intensity could be precisely varied by a factor exceeding 200×. Our results show that these atomically thin 2D heterostructures may be excellent candidates for oxygen sensing.

4.
J Phys Chem B ; 122(49): 11431-11439, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30230843

RESUMO

The dynamics of methionine geminate recombination following photodissociation in ferrous cytochrome c is investigated over a broad temperature range. The kinetic response, above the solvent glass transition ( Tg), is nearly monoexponential and displays a weak temperature dependence. Below Tg, the rebinding kinetics are nonexponential and can be explained using a quenched distribution of enthalpic rebinding barriers, arising from a relatively narrow distribution of heme out-of-plane displacements. The Arrhenius prefactor of this (Δ S = 2) reaction is ∼1011 s-1, which is similar to what has been found for the (Δ S = 1) NO binding reaction in heme proteins. This observation, along with other examples of ultrafast CO binding, provides strong evidence that ligand binding to heme is an adiabatic reaction with a spin-independent prefactor. In order to simultaneously account for the adiabatic nature of the reaction as well as the temperature dependence of both ultrafast CO and methionine geminate rebinding, it is proposed that a spin triplet state intersects and strongly couples to the reactant ( S = 2) and product ( S = 0) state surfaces in the transition state region along the reaction coordinate. It is also suggested that the nature of the intersecting triplet state and the reaction path may depend upon the proximity of the photolyzed ligand relative to the iron atom. At temperatures below ∼60 K, the kinetic data suggest that there is either an unexpected retardation of the heme photoproduct relaxation or that heavy atom quantum mechanical tunneling becomes significant.


Assuntos
Citocromos c/química , Compostos Ferrosos/química , Metionina/química , Animais , Sítios de Ligação , Citocromos c/metabolismo , Compostos Ferrosos/metabolismo , Coração , Cavalos , Cinética , Ligantes , Metionina/metabolismo , Termodinâmica
5.
J Am Chem Soc ; 139(44): 15738-15747, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28984134

RESUMO

The ultrafast kinetics of CO rebinding to carbon monoxide oxidation activator protein (ChCooA) are measured over a wide temperature range and compared with the kinetics of CO binding in other heme systems such as myoglobin (Mb) and hemoglobin (Hb). The Arrhenius prefactor for CO binding to ChCooA and protoheme (∼1011 s-1) is similar to what is found for spin-allowed NO binding to heme proteins and is several orders of magnitude larger than the prefactor of Mb and Hb (∼109 s-1). This indicates that the CO binding reaction is adiabatic, in contrast to the commonly held view that it is nonadiabatic due to spin-forbidden (ΔS = 2) selection rules. Under the adiabatic condition, entropic factors, rather than spin-selection rules, are the source of the reduced Arrhenius prefactors associated with CO binding in Mb and Hb. The kinetic response of ChCooA-CO is nonexponential at all temperatures, including 298 K, and is described quantitatively using a distribution of enthalpic rebinding barriers associated with heterogeneity in the heme doming conformation. Above the solvent glass transition (Tg ∼ 180 K), the rebinding progress slows as temperature increases, and this is ascribed to an evolution of the distribution toward increased heme doming and larger enthalpic barriers. Between Tg and ∼60 K, the nonexponential rebinding slows down as the temperature is lowered and the survival fraction follows the predictions expected for a quenched barrier distribution. Below ∼60 K the rebinding kinetics do not follow these predictions unless quantum mechanical tunneling along the heme doming coordinate is also included as an active channel for CO binding.


Assuntos
Monóxido de Carbono/metabolismo , Heme/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Mioglobina/química , Mioglobina/metabolismo , Cinética , Ligantes , Ligação Proteica , Teoria Quântica , Termodinâmica
6.
J Phys Chem B ; 121(28): 6869-6881, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28628313

RESUMO

A proper description of proton donor-acceptor (D-A) distance fluctuations is crucial for understanding tunneling in proton-coupled electron transport (PCET). The typical harmonic approximation for the D-A potential results in a Gaussian probability distribution, which does not appropriately reflect the electronic repulsion forces that increase the energetic cost of sampling shorter D-A distances. Because these shorter distances are the primary channel for thermally activated tunneling, the analysis of tunneling kinetics depends sensitively on the inherently anharmonic nature of the D-A interaction. Thus, we have used quantum chemical calculations to account for the D-A interaction and developed an improved model for the analysis of experimental tunneling kinetics. Strong internal electric fields are also considered and found to contribute significantly to the compressive forces when the D-A distance distribution is positioned below the van der Waals contact distance. This model is applied to recent experiments on the wild type (WT) and a double mutant (DM) of soybean lipoxygenase-1 (SLO). The compressive force necessary to prepare the tunneling-active distribution in WT SLO is found to fall in the ∼ nN range, which greatly exceeds the measured values of molecular motor and protein unfolding forces. This indicates that ∼60-100 MV/cm electric fields, aligned along the D-A bond axis, must be generated by an enzyme conformational interconversion that facilitates the PCET tunneling reaction. Based on the absolute value of the measured tunneling rate, and using previously calculated values of the electronic matrix element, the population of this tunneling-active conformation is found to lie in the range 10-5-10-7, indicating this is a rare structural fluctuation that falls well below the detection threshold of recent ENDOR experiments. Additional analysis of the DM tunneling kinetics leads to a proposal that a disordered (high entropy) conformation could be tunneling-active due to its broad range of sampled D-A distances.

7.
J Phys Chem A ; 121(10): 2199-2207, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28211681

RESUMO

The often-used "linear approximation" for treating the coupling of proton donor-acceptor (D-A) distance fluctuations to proton-coupled electron transfer tunneling reactions is systematically examined. The accuracy of this approximation is found to depend on the potential energy surfaces that are used to describe both the tunneling particle vibrations and the D-A coordinate probability distribution. Harmonic treatment of both the tunneling particle and the D-A coordinates results in a significant breakdown of the linear approximation when the width of the D-A distribution exceeds ∼0.05 Å. When a symmetric back-to-back Morse potential is used to describe the tunneling particle vibrations in the reactant and product states, the D-A distribution width can be expanded up to ∼0.09 Å before the rates calculated using the linear approximation exceed the exact result by an order of magnitude. Incorporation of a more realistic anharmonic D-A potential, based on quantum calculations, includes the important electronic D-A repulsion energy so that the sampling of short D-A distances is reduced. This approach improves the linear approximation as long as the D-A distribution has a width less than ∼0.1 Å. The conditions for the validity of the linear approximation are found to be more fragile when the calculated kinetic isotope effect (KIE) and its temperature dependence are also taken into account.

8.
Nat Chem ; 8(9): 874-80, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27554414

RESUMO

Directional proton transport along 'wires' that feed biochemical reactions in proteins is poorly understood. Amino-acid residues with high pKa are seldom considered as active transport elements in such wires because of their large classical barrier for proton dissociation. Here, we use the light-triggered proton wire of the green fluorescent protein to study its ground-electronic-state proton-transport kinetics, revealing a large temperature-dependent kinetic isotope effect. We show that 'deep' proton tunnelling between hydrogen-bonded oxygen atoms with a typical donor-acceptor distance of 2.7-2.8 Šfully accounts for the rates at all temperatures, including the unexpectedly large value (2.5 × 10(9) s(-1)) found at room temperature. The rate-limiting step in green fluorescent protein is assigned to tunnelling of the ionization-resistant serine hydroxyl proton. This suggests how high-pKa residues within a proton wire can act as a 'tunnel diode' to kinetically trap protons and control the direction of proton flow.


Assuntos
Proteínas de Fluorescência Verde/química , Prótons , Ligação de Hidrogênio , Cinética , Modelos Químicos , Conformação Proteica , Temperatura
9.
J Phys Chem B ; 120(24): 5351-8, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27229134

RESUMO

Transient absorption, resonance Raman, and vibrational coherence spectroscopies are used to investigate the mechanisms of NO and O2 binding to WT Tt H-NOX and its P115A mutant. Vibrational coherence spectra of the oxy complexes provide clear evidence for the enhancement of an iron-histidine mode near 217 cm(-1) following photoexcitation, which indicates that O2 can be dissociated in these proteins. However, the quantum yield of O2 photolysis is low, particularly in the wild type (≲3%). Geminate recombination of O2 and NO in both of these proteins is very fast (∼1.4 × 10(11) s(-1)) and highly efficient. We show that the distal heme pocket of the H-NOX system forms an efficient trap that limits the O2 off-rate and determines the overall affinity. The distal pocket hydrogen bond, which appears to be stronger in the P115A mutant, may help retard the O2 ligand from escaping into the solvent following either photoinduced or thermal dissociation. This, along with a strengthening of the Fe-O2 bond that is correlated with the significant heme ruffing and saddling distortions, explains the unusually high O2 affinity of WT Tt H-NOX and the even higher affinity found in the P115A mutant.


Assuntos
Proteínas de Bactérias/química , Guanilato Ciclase/química , Oxigênio/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Domínios Proteicos , Teoria Quântica , Análise Espectral Raman , Vibrio cholerae/enzimologia
10.
J Chem Phys ; 142(11): 114101, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25796225

RESUMO

Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near room temperature. This expression also holds when a broad protein conformational distribution of D-A equilibrium distances dominates the spread of the D-A vibrational wavefunction.


Assuntos
Hidrogênio/química , Modelos Químicos , Proteínas/química , Prótons , Ligação de Hidrogênio , Cinética , Movimento (Física) , Teoria Quântica , Temperatura , Vibração
11.
J Phys Chem B ; 118(23): 6062-70, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24823442

RESUMO

Femtosecond vibrational coherence spectroscopy is used to investigate the low frequency vibrational dynamics of the electron transfer heme protein, cytochrome c (cyt c). The vibrational coherence spectra of ferric cyt c have been measured as a function of excitation wavelength within the Soret band. Vibrational coherence spectra obtained with excitation between 412 and 421 nm display a strong mode at ~44 cm(-1) that has been assigned to have a significant contribution from heme ruffling motion in the electronic ground state. This assignment is based partially on the presence of a large heme ruffling distortion in the normal coordinate structural decomposition (NSD) analysis of the X-ray crystal structures. When the excitation wavelength is moved into the ~421-435 nm region, the transient absorption increases along with the relative intensity of two modes near ~55 and 30 cm(-1). The intensity of the mode near 44 cm(-1) appears to minimize in this region and then recover (but with an opposite phase compared to the blue excitation) when the laser is tuned to 443 nm. These observations are consistent with the superposition of both ground and excited state coherence in the 421-435 nm region due to the excitation of a weak porphyrin-to-iron charge transfer (CT) state, which has a lifetime long enough to observe vibrational coherence. The mode near 55 cm(-1) is suggested to arise from ruffling in a transient CT state that has a less ruffled heme due to its iron d(6) configuration.


Assuntos
Citocromos c/química , Animais , Heme/química , Cavalos , Íons/química , Ferro/química , Movimento (Física) , Conformação Proteica , Análise Espectral Raman , Vibração
12.
Proc Natl Acad Sci U S A ; 111(18): 6570-5, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24753591

RESUMO

Cytochrome (cyt) c is an important electron transfer protein. The ruffling deformation of its heme cofactor has been suggested to relate to its electron transfer rate. However, there is no direct experimental evidence demonstrating this correlation. In this work, we studied Pseudomonas aeruginosa cytochrome c551 and its F7A mutant. These two proteins, although similar in their X-ray crystal structure, display a significant difference in their heme out-of-plane deformations, mainly along the ruffling coordinate. Resonance Raman and vibrational coherence measurements also indicate significant differences in ruffling-sensitive modes, particularly the low-frequency γa mode found between ∼50-60 cm(-1). This supports previous assignments of γa as having a large ruffling content. Measurement of the photoreduction kinetics finds an order of magnitude decrease of the photoreduction cross-section in the F7A mutant, which has nearly twice the ruffling deformation as the WT. Additional measurements on cytochrome c demonstrate that heme ruffling is correlated exponentially with the electron transfer rates and suggest that ruffling could play an important role in redox control. A major relaxation of heme ruffling in cytochrome c, upon binding to the mitochondrial membrane, is discussed in this context.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Grupo dos Citocromos c/química , Grupo dos Citocromos c/metabolismo , Citocromos c/química , Citocromos c/metabolismo , Heme/química , Substituição de Aminoácidos , Animais , Proteínas de Bactérias/genética , Cristalografia por Raios X , Grupo dos Citocromos c/genética , Transporte de Elétrons , Cavalos , Cinética , Modelos Moleculares , Mutação , Oxirredução , Processos Fotoquímicos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Análise Espectral Raman , Vibração
13.
J Chem Theory Comput ; 10(2): 751-66, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26580050

RESUMO

A systematic comparison of different environmental effects on the vibrational modes of the 4-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI) chromophore using the ONIOM method allows us to model how the molecule's spectroscopic transitions are modified in the Green Fluorescent Protein (GFP). ONIOM(QM:MM) reduces the expense of normal mode calculations when computing the majority of second derivatives only at the MM level. New developments described here for the efficient solution of the CPHF equations, including contributions from electrostatic interactions with environment charges, mean that QM model systems of ∼100 atoms can be embedded within a much larger MM environment of ∼5000 atoms. The resulting vibrational normal modes, their associated frequencies, and dipole derivative vectors have been used to interpret experimental difference spectra (GFPI2-GFPA), chromophore vibrational Stark shifts, and changes in the difference between electronic and vibrational transition dipoles (mode angles) in the protein environment.

14.
Biochemistry ; 52(34): 5941-51, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23905516

RESUMO

It is generally accepted that the inactive P420 form of cytochrome P450 (CYP) involves the protonation of the native cysteine thiolate to form a neutral thiol heme ligand. On the other hand, it has also been suggested that recruitment of a histidine to replace the native cysteine thiolate ligand might underlie the P450 → P420 transition. Here, we discuss resonance Raman investigations of the H93G myoglobin (Mb) mutant in the presence of tetrahydrothiophene (THT) or cyclopentathiol (CPSH), and on pressure-induced cytochrome P420cam (CYP101), that show a histidine becomes the heme ligand upon CO binding. The Raman mode near 220 cm⁻¹, normally associated with the Fe-histidine vibration in heme proteins, is not observed in either reduced P420cam or the reduced H93G Mb samples, indicating that histidine is not the ligand in the reduced state. The absence of a mode near 220 cm⁻¹ is also inconsistent with a generalization of the suggestion that the 221 cm⁻¹ Raman mode, observed in the P420-CO photoproduct of inducible nitric oxide synthase (iNOS), arises from a thiol-bound ferrous heme. This leads us to assign the 218 cm⁻¹ mode observed in the 10 ns P420cam-CO photoproduct Raman spectrum to a Fe-histidine vibration, in analogy to many other histidine-bound heme systems. Additionally, the inverse correlation plots of the νFe-His and νCO frequencies for the CO adducts of P420cam and the H93G analogs provide supporting evidence that histidine is the heme ligand in the P420-CO-bound state. We conclude that, when CO binds to the ferrous P420 state, a histidine ligand is recruited as the heme ligand. The common existence of an HXC-Fe motif in many CYP systems allows the C → H ligand switch to occur with only minor conformational changes. One suggested conformation of P420-CO involves the addition of another turn in the proximal L helix so that, when the protonated Cys ligand is dissociated from the heme, it can become part of the helix, and the heme is ligated by the His residue from the adjoining loop region. In other systems, such as iNOS and CYP3A4 (where the HXC-Fe motif is not found), a somewhat larger conformational change would be necessary to recuit a nearby histidine.


Assuntos
Cânfora 5-Mono-Oxigenase/química , Sistema Enzimático do Citocromo P-450/química , Heme/química , Histidina/química , Mioglobina/química , Cânfora 5-Mono-Oxigenase/metabolismo , Monóxido de Carbono/química , Sistema Enzimático do Citocromo P-450/metabolismo , Ligantes , Modelos Moleculares , Mioglobina/genética , Conformação Proteica , Análise Espectral Raman
15.
J Phys Chem B ; 117(33): 9615-25, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23863217

RESUMO

The equilibrium unfolding process of ferric horse heart cytochrome c (cyt c), induced by guanidinium hydrochloride (GdHCl), was studied using UV-vis absorption spectroscopy, resonance Raman spectroscopy, and vibrational coherence spectroscopy (VCS). The unfolding process was successfully fit using a three-state model which included the fully folded (N) and unfolded (U) states, along with an intermediate (I) assigned to a Lys bound heme. The VCS spectra revealed for the first time several low-frequency heme modes that are sensitive to cyt c unfolding: γ(a) (~50 cm(-1)), γ(b) (~80 cm(-1)), γ(c) (~100 cm(-1)), and ν(s)(His-Fe-His) at 205 cm(-1). These out-of-plane modes have potential functional relevance and are activated by protein-induced heme distortions. The free energies for the N-I and the I-U transitions at pH 7.0 and 20 °C were found to be 4.6 kcal/M and 11.6 kcal/M, respectively. Imidazole was also introduced to replace the methionine ligand so the unfolding can be modeled as a two-state system. The intensity of the mode γ(b)~80 cm(-1) remains nearly constant during the unfolding process, while the amplitudes of the other low frequency modes track with spectral changes observed at higher frequency. This confirms that the heme deformation changes are coupled to the protein tertiary structural changes that take place upon unfolding. These studies also reveal that damping of the coherent oscillations depends sensitively on the coupling between heme and the surrounding water solvent.


Assuntos
Citocromos c/metabolismo , Animais , Citocromos c/química , Guanidina/química , Heme/química , Cavalos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Desnaturação Proteica , Espectrofotometria Ultravioleta , Análise Espectral Raman , Temperatura , Termodinâmica
16.
J Phys Chem B ; 117(15): 4042-9, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23472676

RESUMO

The photodissociation of cyanide from ferric myoglobin (MbCN) and horseradish peroxidase (HRPCN) has definitively been observed. This has implications for the interpretation of ultrafast IR (Helbing et al. Biophys. J. 2004, 87, 1881-1891) and optical (Gruia et al. Biophys. J. 2008, 94, 2252-2268) studies that had previously suggested the Fe-CN bond was photostable in MbCN. The photolysis of ferric MbCN takes place with a quantum yield of ~75%, and the resonance Raman spectrum of the photoproduct observed in steady-state experiments as a function of laser power and sample spinning rate is identical to that of ferric Mb (metMb). The data are quantitatively analyzed using a simple model where cyanide is photodissociated and, although geminate rebinding with a rate of kBA ≈ (3.6 ps)(-1) is the dominant process, some CN(-) exits from the distal heme pocket and is replaced by water. Using independently determined values for the CN(-) association rate, we find that the CN(-) escape rate from the ferric myoglobin pocket to the solution at 293 K is kout ≈ (1-2) × 10(7) s(-1). This value is very similar to, but slightly larger than, the histidine gated escape rate of CO from Mb (1.1 × 10(7) s(-1)) under the same conditions. The analysis leads to an escape probability kout/(kout + kBA) ~ 10(-4), which is unobservable in most time domain kinetic measurements. However, the photolysis is surprisingly easy to detect in Mb using cw resonance Raman measurements. This is due to the anomalously slow CN(-) bimolecular association rate (170 M(-1) s(-1)), which arises from the need for water to exchange at the ferric heme binding site of Mb. In contrast, ferric HRP does not have a heme bound water molecule and its CN(-) bimolecular association rate is larger by ~10(3), making the CN(-) photolysis more difficult to observe.


Assuntos
Cianetos/química , Heme/química , Peroxidase do Rábano Silvestre/química , Mioglobina/química , Fotólise , Peroxidase do Rábano Silvestre/metabolismo , Modelos Moleculares
17.
J Biol Chem ; 287(26): 21729-40, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22544803

RESUMO

Carbon monoxide oxidation activator (CooA) proteins are heme-based CO-sensing transcription factors. Here we study the ultrafast dynamics of geminate CO rebinding in two CooA homologues, Rhodospirillum rubrum (RrCooA) and Carboxydothermus hydrogenoformans (ChCooA). The effects of DNA binding and the truncation of the DNA-binding domain on the CO geminate recombination kinetics were specifically investigated. The CO rebinding kinetics in these CooA complexes take place on ultrafast time scales but remain non-exponential over many decades in time. We show that this non-exponential kinetic response is due to a quenched enthalpic barrier distribution resulting from a distribution of heme geometries that is frozen or slowly evolving on the time scale of CO rebinding. We also show that, upon CO binding, the distal pocket of the heme in the CooA proteins relaxes to form a very efficient hydrophobic trap for CO. DNA binding further tightens the narrow distal pocket and slightly weakens the iron-proximal histidine bond. Comparison of the CO rebinding kinetics of RrCooA, truncated RrCooA, and DNA-bound RrCooA proteins reveals that the uncomplexed and inherently flexible DNA-binding domain adds additional structural heterogeneity to the heme doming coordinate. When CooA forms a complex with DNA, the flexibility of the DNA-binding domain decreases, and the distribution of the conformations available in the heme domain becomes restricted. The kinetic studies also offer insights into how the architecture of the heme environment can tune entropic barriers in order to control the geminate recombination of CO in heme proteins, whereas spin selection rules play a minor or non-existent role.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/química , Monóxido de Carbono/química , DNA/química , Hemeproteínas/química , Rhodospirillum rubrum/metabolismo , Transativadores/química , Sítio Alostérico , Proteínas de Ligação a DNA/química , Heme/química , Cinética , Ligantes , Modelos Moleculares , Modelos Estatísticos , Conformação Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Fatores de Tempo , Transcrição Gênica
18.
J Am Chem Soc ; 133(46): 18816-27, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21961804

RESUMO

Femtosecond vibrational coherence spectroscopy was used to investigate the low-frequency vibrational dynamics of the heme in the carbon monoxide oxidation activator protein (CooA) from the thermophilic anaerobic bacterium Carboxydothermus hydrogenoformans (Ch-CooA). Low frequency vibrational modes are important because they are excited by the ambient thermal bath (k(B)T = 200 cm(-1)) and participate in thermally activated barrier crossing events. However, such modes are nearly impossible to detect in the aqueous phase using traditional spectroscopic methods. Here, we present the low frequency coherence spectra of the ferric, ferrous, and CO-bound forms of Ch-CooA in order to compare the protein-induced heme distortions in its active and inactive states. Distortions take place predominantly along the coordinates of low-frequency modes because of their weak force constants, and such distortions are reflected in the intensity of the vibrational coherence signals. A strong mode near ~90 cm(-1) in the ferrous form of Ch-CooA is suggested to contain a large component of heme ruffling, consistent with the imidazole-bound ferrous heme crystal structure, which shows a significant protein-induced heme distortion along this coordinate. A mode observed at ~228 cm(-1) in the six-coordinate ferrous state is proposed to be the ν(Fe-His) stretching vibration. The observation of the Fe-His mode indicates that photolysis of the N-terminal α-amino axial ligand takes place. This is followed by a rapid (~8.5 ps) transient absorption recovery, analogous to methionine rebinding in photolyzed ferrous cytochrome c. We have also studied CO photolysis in CooA, which revealed very strong photoproduct state coherent oscillations. The observation of heme-CO photoproduct oscillations is unusual because most other heme systems have CO rebinding kinetics that are too slow to make the measurement possible. The low frequency coherence spectrum of the CO-bound form of Ch-CooA shows a strong vibration at ~230 cm(-1) that is broadened and up-shifted compared to the ν(Fe-His) of Rr-CooA (216 cm(-1)). We propose that the stronger Fe-His bond is related to the enhanced thermal stability of Ch-CooA and that there is a smaller (time dependent) tilt of the histidine ring with respect to the heme plane in Ch-CooA. The appearance of strong modes at ~48 cm(-1) in both the ferrous and CO-bound forms of Ch-CooA is consistent with coupling of the heme doming distortion to the photolysis reaction in both samples. Upon CO binding and protein activation, a heme mode near 112 ± 5 cm(-1) disappears, probably indicating a decreased heme saddling distortion. This reflects changes in the heme environment and geometry that must be associated with the conformational transition activating the DNA-binding domain. Protein-specific DNA binding to the CO-bound form of Ch-CooA was also investigated, and although the CO rebinding kinetics are significantly perturbed, there are negligible changes in the low-frequency vibrational spectrum of the heme.


Assuntos
Monóxido de Carbono/análise , Coenzima A/química , Hemeproteínas/química , Análise Espectral , Transativadores/química , Vibração , Proteínas de Bactérias/química , Monóxido de Carbono/química , Cristalografia por Raios X , Imidazóis/química , Modelos Moleculares , Estrutura Molecular
19.
J Chem Phys ; 135(1): 015101, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21744919

RESUMO

Nuclear resonance vibrational spectroscopy (NRVS) reveals the vibrational dynamics of a Mössbauer probe nucleus. Here, (57)Fe NRVS measurements yield the complete spectrum of Fe vibrations in halide complexes of iron porphyrins. Iron porphine serves as a useful symmetric model for the more complex spectrum of asymmetric heme molecules that contribute to numerous essential biological processes. Quantitative comparison with the vibrational density of states (VDOS) predicted for the Fe atom by density functional theory calculations unambiguously identifies the correct sextet ground state in each case. These experimentally authenticated calculations then provide detailed normal mode descriptions for each observed vibration. All Fe-ligand vibrations are clearly identified despite the high symmetry of the Fe environment. Low frequency molecular distortions and acoustic lattice modes also contribute to the experimental signal. Correlation matrices compare vibrations between different molecules and yield a detailed picture of how heme vibrations evolve in response to (a) halide binding and (b) asymmetric placement of porphyrin side chains. The side chains strongly influence the energetics of heme doming motions that control Fe reactivity, which are easily observed in the experimental signal.


Assuntos
Porfirinas/química , Simulação por Computador , Elétrons , Modelos Moleculares , Análise Espectral/métodos , Temperatura
20.
J Phys Chem B ; 115(18): 5665-77, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21391540

RESUMO

Vibrational coherence spectroscopy (VCS) is used to investigate the low-frequency dynamics of camphor-free and camphor-bound cytochrome P450(cam) (CYP 101) and its L358P mutant. The low-frequency heme vibrations are found to be perturbed upon binding to the electron transfer partner putidaredoxin (Pdx). A strong correlation between the "detuned" vibrational coherence spectrum, which monitors frequencies between 100 and 400 cm(-1), and the lower frequency part of the Raman spectrum is also demonstrated. The very low frequency region ≤200 cm(-1), uniquely accessed by open-band VCS measurements, reveals a mode near 103 cm(-1) in P450(cam) when camphor is not present in the distal pocket. This reflects the presence of a specific heme distortion, such as saddling or ruffling, in the substrate-free state where water is coordinated to the low-spin iron atom. Such distortions are likely to retard the rate of electron transfer to the substrate-free protein. The presence of strong mode near ∼33 cm(-1) in the camphor-bound form suggests a significant heme-doming distortion, which is supported by analysis using normal coordinate structural decomposition. Pdx also displays a strong coherent vibration near 30 cm(-1) that in principle could be involved in vibrational resonance with its electron transfer target. A splitting of the 33 cm(-1) feature and intensification of a mode near 78 cm(-1) appear when the P450(cam)/Pdx complex is formed. These observations are consistent with vibrational mixing and heme geometric distortions upon Pdx binding that are coincident with the increased thiolate electron donation to the heme. The appearance of a mode near 65 cm(-1) in the coherence spectra of the L358P mutant is comparable to the mode at 78 cm(-1) seen in the P450(cam)/Pdx complex and is consistent with the view that the heme and its environment in the L358P mutant are similar to the Pdx-bound native protein. Resonance Raman spectra are presented for both P450(cam) and the L358P mutant and the changes are correlated with an increased amount of thiolate electron donation to the heme in the mutant sample.


Assuntos
Cânfora 5-Mono-Oxigenase/química , Ferredoxinas/química , Substituição de Aminoácidos , Cânfora 5-Mono-Oxigenase/genética , Cânfora 5-Mono-Oxigenase/metabolismo , Transporte de Elétrons , Mutação , Oxirredução , Pseudomonas putida/enzimologia , Análise Espectral Raman , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA