Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(2): eabm0218, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35030024

RESUMO

Before the introduction of domestic horses in Mesopotamia in the late third millennium BCE, contemporary cuneiform tablets and seals document intentional breeding of highly valued equids called kungas for use in diplomacy, ceremony, and warfare. Their precise zoological classification, however, has never been conclusively determined. Morphometric analysis of equids uncovered in rich Early Bronze Age burials at Umm el-Marra, Syria, placed them beyond the ranges reported for other known equid species. We sequenced the genomes of one of these ~4500-year-old equids, together with an ~11,000-year-old Syrian wild ass (hemippe) from Göbekli Tepe and two of the last surviving hemippes. We conclude that kungas were F1 hybrids between female domestic donkeys and male hemippes, thus documenting the earliest evidence of hybrid animal breeding.

2.
PLoS One ; 12(4): e0174216, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28422966

RESUMO

Taxonomic over-splitting of extinct or endangered taxa, due to an incomplete knowledge of both skeletal morphological variability and the geographical ranges of past populations, continues to confuse the link between isolated extant populations and their ancestors. This is particularly problematic with the genus Equus. To more reliably determine the evolution and phylogeographic history of the endangered Asiatic wild ass, we studied the genetic diversity and inter-relationships of both extinct and extant populations over the last 100,000 years, including samples throughout its previous range from Western Europe to Southwest and East Asia. Using 229 bp of the mitochondrial hypervariable region, an approach which allowed the inclusion of information from extremely poorly preserved ancient samples, we classify all non-African wild asses into eleven clades that show a clear phylogeographic structure revealing their phylogenetic history. This study places the extinct European wild ass, E. hydruntinus, the phylogeny of which has been debated since the end of the 19th century, into its phylogenetic context within the Asiatic wild asses and reveals recent mitochondrial introgression between populations currently regarded as separate species. The phylogeographic organization of clades resulting from these efforts can be used not only to improve future taxonomic determination of a poorly characterized group of equids, but also to identify historic ranges, interbreeding events between various populations, and the impact of ancient climatic changes. In addition, appropriately placing extant relict populations into a broader phylogeographic and genetic context can better inform ongoing conservation strategies for this highly-endangered species.


Assuntos
Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Espécies em Perigo de Extinção , Equidae/genética , Filogenia , Animais , Evolução Biológica , Equidae/anatomia & histologia , Equidae/classificação , Europa (Continente) , Extinção Biológica , Ásia Oriental , Fósseis , Variação Genética , Haplótipos , Filogeografia , Análise de Sequência de DNA
3.
PLoS One ; 5(9)2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20927390

RESUMO

BACKGROUND: PCR amplification of minute quantities of degraded DNA for ancient DNA research, forensic analyses, wildlife studies and ultrasensitive diagnostics is often hampered by contamination problems. The extent of these problems is inversely related to DNA concentration and target fragment size and concern (i) sample contamination, (ii) laboratory surface contamination, (iii) carry-over contamination, and (iv) contamination of reagents. METHODOLOGY/PRINCIPAL FINDINGS: Here we performed a quantitative evaluation of current decontamination methods for these last three sources of contamination, and developed a new procedure to eliminate contaminating DNA contained in PCR reagents. We observed that most current decontamination methods are either not efficient enough to degrade short contaminating DNA molecules, rendered inefficient by the reagents themselves, or interfere with the PCR when used at doses high enough to eliminate these molecules. We also show that efficient reagent decontamination can be achieved by using a combination of treatments adapted to different reagent categories. Our procedure involves γ- and UV-irradiation and treatment with a mutant recombinant heat-labile double-strand specific DNase from the Antarctic shrimp Pandalus borealis. Optimal performance of these treatments is achieved in narrow experimental conditions that have been precisely analyzed and defined herein. CONCLUSIONS/SIGNIFICANCE: There is not a single decontamination method valid for all possible contamination sources occurring in PCR reagents and in the molecular biology laboratory and most common decontamination methods are not efficient enough to decontaminate short DNA fragments of low concentration. We developed a versatile multistrategy decontamination procedure for PCR reagents. We demonstrate that this procedure allows efficient reagent decontamination while preserving the efficiency of PCR amplification of minute quantities of DNA.


Assuntos
Contaminação por DNA , DNA/química , Descontaminação/métodos , Indicadores e Reagentes/análise , Reação em Cadeia da Polimerase/instrumentação , DNA/genética , Endonucleases/química , Raios gama , Indicadores e Reagentes/efeitos da radiação , Raios Ultravioleta
4.
Proc Natl Acad Sci U S A ; 104(3): 739-44, 2007 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-17210911

RESUMO

Despite the enormous potential of analyses of ancient DNA for phylogeographic studies of past populations, the impact these analyses, most of which are performed with fossil samples from natural history museum collections, has been limited to some extent by the inefficient recovery of ancient genetic material. Here we show that the standard storage conditions and/or treatments of fossil bones in these collections can be detrimental to DNA survival. Using a quantitative paleogenetic analysis of 247 herbivore fossil bones up to 50,000 years old and originating from 60 different archeological and paleontological contexts, we demonstrate that freshly excavated and nontreated unwashed bones contain six times more DNA and yield twice as many authentic DNA sequences as bones treated with standard procedures. This effect was even more pronounced with bones from one Neolithic site, where only freshly excavated bones yielded results. Finally, we compared the DNA content in the fossil bones of one animal, a approximately 3,200-year-old aurochs, excavated in two separate seasons 57 years apart. Whereas the washed museum-stored fossil bones did not permit any DNA amplification, all recently excavated bones yielded authentic aurochs sequences. We established that during the 57 years when the aurochs bones were stored in a collection, at least as much amplifiable DNA was lost as during the previous 3,200 years of burial. This result calls for a revision of the postexcavation treatment of fossil bones to better preserve the genetic heritage of past life forms.


Assuntos
Osso e Ossos/metabolismo , DNA/genética , DNA/isolamento & purificação , Fósseis , Reação em Cadeia da Polimerase/métodos , Animais , Sequência de Bases , Bovinos , DNA/análise , Microscopia Eletrônica de Varredura , Mitocôndrias/genética , Dados de Sequência Molecular , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA