Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(71): 10660-10663, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37581279

RESUMO

Piperic acid derivatives were found to affect the islet amyloid polypeptide (IAPP) aggregation process. Structure-activity relationship studies revealed that PAD-13 was an efficient molecular modulator to accelerate IAPP fibril formation by promoting primary and secondary nucleation and reducing its antimicrobial activity.


Assuntos
Anti-Infecciosos , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Amiloide/química , Ácidos Graxos Insaturados , Anti-Infecciosos/farmacologia
2.
Biochimie ; 177: 153-163, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32860895

RESUMO

The aggregation of islet amyloid polypeptide (IAPP) is implicated in the pathogenesis of type 2 diabetes (T2D). In T2D, this peptide aggregates to form amyloid fibrils; the mechanism responsible for islet amyloid formation is unclear. However, it is known that the aggregation propensity of IAPP is highly related to its primary sequence. Several residues have been suggested to be critical in modulating IAPP amyloid formation, but role of the sole lysine residue at position 1 (Lys-1) in IAPP has not been discussed. In our previous study, we found that glycated IAPP can form amyloid faster than normal IAPP and induce normal IAPP to expedite the aggregation process. To gain more insight into the contribution of Lys-1 in the kinetics of fibril formation, we synthesized another two IAPP variants, K1E-IAPP and K1Nle-IAPP, in which the Lys residue was mutated to glutamate and norleucine, respectively. Interestingly, we observed that the negative or neutral charged side chain at this position was preferred for amyloid formation. The findings suggested this residue may take part in the inter- or intra-molecular interaction during IAPP aggregation, even though it was proposed not to be in part of fibril core structure. Our data also revealed that the inhibitory mechanism of some inhibitors for IAPP aggregation require reaction with Lys-1. Modifications of Lys-1, such as protein glycation, may affect the effectiveness of the inhibitory action of some potential drugs in the treatment of amyloidosis.


Assuntos
Amiloide/biossíntese , Amiloidose/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Lisina/química , Lisina/metabolismo , Sequência de Aminoácidos , Amiloide/antagonistas & inibidores , Amiloide/ultraestrutura , Membrana Celular/metabolismo , Análise Mutacional de DNA , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Cinética , Lipídeos de Membrana/metabolismo , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Polifenóis/farmacologia , Agregados Proteicos/efeitos dos fármacos , Ligação Proteica
3.
Biochemistry ; 59(15): 1482-1492, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32266809

RESUMO

Aggregation of polypeptides and proteins is commonly associated with human and other vertebrate diseases. For example, amyloid plaques consisting of amyloid-ß proteins are frequently identified in Alzheimer's disease and islet amyloid formed by islet amyloid polypeptide (IAPP, amylin) can be found in most patients with type 2 diabetes (T2D). Although many fluorescent dyes have been developed to stain amyloid fibrils, very few examples have been designed for IAPP. In this study, a series of environmentally sensitive fluorescent probes using flavonoid as a scaffold design are rationally designed and synthesized. One of these probes, namely 3-HF-ene-4'-OMe, can bind to IAPP fibrils but not nonfibrillar IAPP by exhibiting a much stronger fluorescent enhancement at 535 nm. In addition, this probe shows better detection sensitivity to IAPP fibrils compared with that of conventionally used thioflavin-T. We demonstrate that 3-HF-ene-4'-OMe can be used to monitor the kinetics of IAPP fibril formation in vitro even in the presence an amyloid inhibitor. To test the specificity of the probe, we attempt to incubate this probe with amyloid fibrils formed from other amyloidogenic proteins. Interestingly, this probe shows different responses when mixed with these fibrils, suggesting the mode of binding of this probe on these fibrils could be different. Moreover, we show that this probe is not toxic to pancreatic mouse ß-cells. Further structural optimization based on the structure of 3-HF-ene-4'-OMe may yield a specific probe for imaging islet amyloid in the pancreas. That would improve our understanding of the relationship between islet amyloid and T2D.


Assuntos
Desenho de Fármacos , Flavonoides/química , Corantes Fluorescentes/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Animais , Linhagem Celular Tumoral , Flavonoides/síntese química , Corantes Fluorescentes/síntese química , Humanos , Camundongos , Estrutura Molecular , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA